RESUMO
Tropical forests store 40-50 per cent of terrestrial vegetation carbon1. However, spatial variations in aboveground live tree biomass carbon (AGC) stocks remain poorly understood, in particular in tropical montane forests2. Owing to climatic and soil changes with increasing elevation3, AGC stocks are lower in tropical montane forests compared with lowland forests2. Here we assemble and analyse a dataset of structurally intact old-growth forests (AfriMont) spanning 44 montane sites in 12 African countries. We find that montane sites in the AfriMont plot network have a mean AGC stock of 149.4 megagrams of carbon per hectare (95% confidence interval 137.1-164.2), which is comparable to lowland forests in the African Tropical Rainforest Observation Network4 and about 70 per cent and 32 per cent higher than averages from plot networks in montane2,5,6 and lowland7 forests in the Neotropics, respectively. Notably, our results are two-thirds higher than the Intergovernmental Panel on Climate Change default values for these forests in Africa8. We find that the low stem density and high abundance of large trees of African lowland forests4 is mirrored in the montane forests sampled. This carbon store is endangered: we estimate that 0.8 million hectares of old-growth African montane forest have been lost since 2000. We provide country-specific montane forest AGC stock estimates modelled from our plot network to help to guide forest conservation and reforestation interventions. Our findings highlight the need for conserving these biodiverse9,10 and carbon-rich ecosystems.
Assuntos
Atitude , Sequestro de Carbono , Carbono/análise , Floresta Úmida , Árvores/metabolismo , Clima Tropical , África , Biomassa , Mudança Climática , Conservação dos Recursos Naturais , Conjuntos de Dados como Assunto , Mapeamento GeográficoRESUMO
Structurally intact tropical forests sequestered about half of the global terrestrial carbon uptake over the 1990s and early 2000s, removing about 15 per cent of anthropogenic carbon dioxide emissions1-3. Climate-driven vegetation models typically predict that this tropical forest 'carbon sink' will continue for decades4,5. Here we assess trends in the carbon sink using 244 structurally intact African tropical forests spanning 11 countries, compare them with 321 published plots from Amazonia and investigate the underlying drivers of the trends. The carbon sink in live aboveground biomass in intact African tropical forests has been stable for the three decades to 2015, at 0.66 tonnes of carbon per hectare per year (95 per cent confidence interval 0.53-0.79), in contrast to the long-term decline in Amazonian forests6. Therefore the carbon sink responses of Earth's two largest expanses of tropical forest have diverged. The difference is largely driven by carbon losses from tree mortality, with no detectable multi-decadal trend in Africa and a long-term increase in Amazonia. Both continents show increasing tree growth, consistent with the expected net effect of rising atmospheric carbon dioxide and air temperature7-9. Despite the past stability of the African carbon sink, our most intensively monitored plots suggest a post-2010 increase in carbon losses, delayed compared to Amazonia, indicating asynchronous carbon sink saturation on the two continents. A statistical model including carbon dioxide, temperature, drought and forest dynamics accounts for the observed trends and indicates a long-term future decline in the African sink, whereas the Amazonian sink continues to weaken rapidly. Overall, the uptake of carbon into Earth's intact tropical forests peaked in the 1990s. Given that the global terrestrial carbon sink is increasing in size, independent observations indicating greater recent carbon uptake into the Northern Hemisphere landmass10 reinforce our conclusion that the intact tropical forest carbon sink has already peaked. This saturation and ongoing decline of the tropical forest carbon sink has consequences for policies intended to stabilize Earth's climate.
Assuntos
Dióxido de Carbono/metabolismo , Sequestro de Carbono , Florestas , Árvores/metabolismo , Clima Tropical , África , Atmosfera/química , Biomassa , Brasil , Secas , História do Século XX , História do Século XXI , Modelos Teóricos , TemperaturaRESUMO
Environmental exposure to active pharmaceutical ingredients (APIs) can have negative effects on the health of ecosystems and humans. While numerous studies have monitored APIs in rivers, these employ different analytical methods, measure different APIs, and have ignored many of the countries of the world. This makes it difficult to quantify the scale of the problem from a global perspective. Furthermore, comparison of the existing data, generated for different studies/regions/continents, is challenging due to the vast differences between the analytical methodologies employed. Here, we present a global-scale study of API pollution in 258 of the world's rivers, representing the environmental influence of 471.4 million people across 137 geographic regions. Samples were obtained from 1,052 locations in 104 countries (representing all continents and 36 countries not previously studied for API contamination) and analyzed for 61 APIs. Highest cumulative API concentrations were observed in sub-Saharan Africa, south Asia, and South America. The most contaminated sites were in low- to middle-income countries and were associated with areas with poor wastewater and waste management infrastructure and pharmaceutical manufacturing. The most frequently detected APIs were carbamazepine, metformin, and caffeine (a compound also arising from lifestyle use), which were detected at over half of the sites monitored. Concentrations of at least one API at 25.7% of the sampling sites were greater than concentrations considered safe for aquatic organisms, or which are of concern in terms of selection for antimicrobial resistance. Therefore, pharmaceutical pollution poses a global threat to environmental and human health, as well as to delivery of the United Nations Sustainable Development Goals.
Assuntos
Rios/química , Poluição Química da Água/análise , Poluição Química da Água/prevenção & controle , Ecossistema , Exposição Ambiental , Monitoramento Ambiental , Humanos , Preparações Farmacêuticas , Águas Residuárias/análise , Águas Residuárias/química , Água/análise , Água/química , Poluentes Químicos da Água/análiseRESUMO
The responses of tropical forests to environmental change are critical uncertainties in predicting the future impacts of climate change. The positive phase of the 2015-2016 El Niño Southern Oscillation resulted in unprecedented heat and low precipitation in the tropics with substantial impacts on the global carbon cycle. The role of African tropical forests is uncertain as their responses to short-term drought and temperature anomalies have yet to be determined using on-the-ground measurements. African tropical forests may be particularly sensitive because they exist in relatively dry conditions compared with Amazonian or Asian forests, or they may be more resistant because of an abundance of drought-adapted species. Here, we report responses of structurally intact old-growth lowland tropical forests inventoried within the African Tropical Rainforest Observatory Network (AfriTRON). We use 100 long-term inventory plots from six countries each measured at least twice prior to and once following the 2015-2016 El Niño event. These plots experienced the highest temperatures and driest conditions on record. The record temperature did not significantly reduce carbon gains from tree growth or significantly increase carbon losses from tree mortality, but the record drought did significantly decrease net carbon uptake. Overall, the long-term biomass increase of these forests was reduced due to the El Niño event, but these plots remained a live biomass carbon sink (0.51 ± 0.40 Mg C ha-1 y-1) despite extreme environmental conditions. Our analyses, while limited to African tropical forests, suggest they may be more resistant to climatic extremes than Amazonian and Asian forests.
Assuntos
Mudança Climática , Floresta Úmida , Árvores/crescimento & desenvolvimento , Clima Tropical , Ciclo do Carbono , Secas , El Niño Oscilação Sul , Temperatura Alta , Humanos , Estações do AnoRESUMO
There has been an increasing interest in fodder trees and their potential to help the rural poor. However, few studies have addressed the ecological impacts of fodder tree harvesting. We investigated the species harvested and the techniques used, and the effects of fodder harvesting on (1) species' populations and (2) forest carbon stocks in three montane forests in Kenya. Focus-group discussions were organized in 36 villages to determine which species were harvested and with which techniques. Field observations were made on vegetation plots: stem diameter, tree height, species and extent of harvest were recorded. Carbon stocks were calculated using an allometric equation with (1) observed height of harvested trees, and (2) potential height estimated with a power model, and results were compared. Eight tree species were commonly harvested for fodder using different techniques (some branches, main stem, most branches except stem apex). Fodder harvesting (together with other uses for some species) negatively affected one species populations (Olea europaea), it did not negatively affect four (Drypetes gerrardii, Gymnosporia heterophylla, Pavetta gardeniifolia, Xymalos monospora), and more information is needed for three species (Olea capensis, Prunus africana, Rinorea convallarioides). Fodder harvesting did not significantly reduce forest carbon stocks, suggesting that local communities could continue using these fodder trees if a carbon project is established. Among the fodder species studied, X. monospora could be used in reforestation programs, as it has multiple uses and can withstand severe pruning. Although our study is only a snapshot, it is a baseline which can be used to monitor changes in fodder harvesting and its impacts related to increasing droughts in northern Kenya and increasing human populations.
RESUMO
Thermophilization is the directional change in species community composition towards greater relative abundances of species associated with warmer environments. This process is well-documented in temperate and Neotropical plant communities, but it is uncertain whether this phenomenon occurs elsewhere in the tropics. Here we extend the search for thermophilization to equatorial Africa, where lower tree diversity compared to other tropical forest regions and different biogeographic history could affect community responses to climate change. Using re-census data from 17 forest plots in three mountain regions of Africa, we find a consistent pattern of thermophilization in tree communities. Mean rates of thermophilization were +0.0086 °C·y-1 in the Kigezi Highlands (Uganda), +0.0032 °C·y-1 in the Virunga Mountains (Rwanda-Uganda-Democratic Republic of the Congo) and +0.0023 °C·y-1 in the Udzungwa Mountains (Tanzania). Distinct from other forests, both recruitment and mortality were important drivers of thermophilzation in the African plots. The forests studied currently act as a carbon sink, but the consequences of further thermophilization are unclear.
Assuntos
Mudança Climática , Florestas , Árvores , Clima Tropical , Biodiversidade , Temperatura , Uganda , Tanzânia , Ruanda , República Democrática do Congo , Sequestro de CarbonoRESUMO
BACKGROUND: Mangrove forests have gained recognition for their potential role in climate change mitigation due to carbon sequestration in live trees, and carbon storage in the sediments trapped by mangrove tree roots and pneumatophores. Africa hosts about 19% of the world's mangroves, yet relatively few studies have examined the carbon stocks of African mangroves. The available studies report considerable differences among sites and amongst the different pools of carbon stocks. None considered the effects of seaward distance. We present details of AGC and SOC carbon stocks for Lindi in Tanzania, and focus on how these values differ with increasing seaward distance and, how our results compare to those reported elsewhere across Africa. RESULTS: AGC ranged between 11 and 55 Mg C ha-1, but was not significantly affected by seaward distance. SOC for 0-1 m depth ranged from 154 to 484, with a mean of 302 Mg C ha-1. SOC was significantly negatively correlated with seaward distance. Mangrove type (estuarine/oceanic), soil erosion, soil depth may explain these differences We note important methodological differences in previous studies on carbon stocks in mangroves in Africa. CONCLUSION: This study indicates that seaward distance has an important effect on SOC stocks in the Lindi region of Tanzania. SOC should be fully incorporated into national climate change mitigation policies. Studies should report seaward distance and to describe the type of mangrove stand to make results easily comparable across sites and to assess the true value of Blue Carbon in Africa. We recommend focusing on trees > 10 cm diameter for AGC, and sampling soils to at least 1 m depth for SOC, which would provide a more complete assessment of the potentially considerable mangrove carbon store.
RESUMO
Forest biomass is an essential indicator for monitoring the Earth's ecosystems and climate. It is a critical input to greenhouse gas accounting, estimation of carbon losses and forest degradation, assessment of renewable energy potential, and for developing climate change mitigation policies such as REDD+, among others. Wall-to-wall mapping of aboveground biomass (AGB) is now possible with satellite remote sensing (RS). However, RS methods require extant, up-to-date, reliable, representative and comparable in situ data for calibration and validation. Here, we present the Forest Observation System (FOS) initiative, an international cooperation to establish and maintain a global in situ forest biomass database. AGB and canopy height estimates with their associated uncertainties are derived at a 0.25 ha scale from field measurements made in permanent research plots across the world's forests. All plot estimates are geolocated and have a size that allows for direct comparison with many RS measurements. The FOS offers the potential to improve the accuracy of RS-based biomass products while developing new synergies between the RS and ground-based ecosystem research communities.
Assuntos
Biomassa , Florestas , Tecnologia de Sensoriamento Remoto , Conservação dos Recursos Naturais , Monitoramento Ambiental/métodosRESUMO
Quantifying carbon dynamics in forests is critical for understanding their role in long-term climate regulation1-4. Yet little is known about tree longevity in tropical forests3,5-8, a factor that is vital for estimating carbon persistence3,4. Here we calculate mean carbon age (the period that carbon is fixed in trees7) in different strata of African tropical forests using (1) growth-ring records with a unique timestamp accurately demarcating 66 years of growth in one site and (2) measurements of diameter increments from the African Tropical Rainforest Observation Network (23 sites). We find that in spite of their much smaller size, in understory trees mean carbon age (74 years) is greater than in sub-canopy (54 years) and canopy (57 years) trees and similar to carbon age in emergent trees (66 years). The remarkable carbon longevity in the understory results from slow and aperiodic growth as an adaptation to limited resource availability9-11. Our analysis also reveals that while the understory represents a small share (11%) of the carbon stock12,13, it contributes disproportionally to the forest carbon sink (20%). We conclude that accounting for the diversity of carbon age and carbon sequestration among different forest strata is critical for effective conservation management14-16 and for accurate modelling of carbon cycling4.
Assuntos
Sequestro de Carbono , Carbono/análise , Florestas , Árvores/fisiologia , Ciclo do Carbono , República Democrática do Congo , Fatores de Tempo , Árvores/crescimento & desenvolvimento , Clima TropicalRESUMO
The West African forest-savanna mosaic, an important habitat for biodiversity and humans, is severely degraded, fragmented and modified by human activities. However, few studies have quantified the land cover changes observed over time and/or analysed the drivers of change. This study focused on Fazao-Malfakassa National Park, the largest in Togo, uses a combination of remote sensing, ground surveys and questionnaires to: (i) quantify vegetation changes, (ii) determine the drivers of change, (iii) compare results with findings elsewhere in the region and (iv) suggest management interventions. The images used were Landsat 5 TM, Landsat 7 ETM and Sentinel-2. Different vegetation indices were computed including: number of fragments, index of dominance, mean area of a vegetation type and mean annual expansion rate. In total, 300 people (including park staff and local populations) were interviewed using a semi-structured questionnaire. Results indicate that between 1987 and 2015 closed-canopy forest and tree-savanna became severely degraded and fragmented, following trends in other parts of the West African forest-savanna mosaic. The main drivers of change were agricultural expansion, bush fires and timber extraction. Observed changes and drivers altered with time: e.g. agricultural expansion was greatest during 1987-2001 (linked with political instability) while illegal timber extraction augmented during 2001-2015 (following increased timber value). Park staff and local populations' perceptions on drivers of change did not differ. Our study highlights that action is urgently needed if we are to preserve this important habitat, the biodiversity it hosts and the services it provides to humans. We suggest several management interventions, learning from successful interventions elsewhere in the region.
Assuntos
Monitoramento Ambiental/métodos , Poaceae/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento , Agricultura , Conservação dos Recursos Naturais , Florestas , Pradaria , Tecnologia de Sensoriamento Remoto/métodos , Imagens de Satélites , TogoRESUMO
Quantifying the relationship between tree diameter and height is a key component of efforts to estimate biomass and carbon stocks in tropical forests. Although substantial site-to-site variation in height-diameter allometries has been documented, the time consuming nature of measuring all tree heights in an inventory plot means that most studies do not include height, or else use generic pan-tropical or regional allometric equations to estimate height.Using a pan-tropical dataset of 73 plots where at least 150 trees had in-field ground-based height measurements, we examined how the number of trees sampled affects the performance of locally derived height-diameter allometries, and evaluated the performance of different methods for sampling trees for height measurement.Using cross-validation, we found that allometries constructed with just 20 locally measured values could often predict tree height with lower error than regional or climate-based allometries (mean reduction in prediction error = 0.46 m). The predictive performance of locally derived allometries improved with sample size, but with diminishing returns in performance gains when more than 40 trees were sampled. Estimates of stand-level biomass produced using local allometries to estimate tree height show no over- or under-estimation bias when compared with biomass estimates using field measured heights. We evaluated five strategies to sample trees for height measurement, and found that sampling strategies that included measuring the heights of the ten largest diameter trees in a plot outperformed (in terms of resulting in local height-diameter models with low height prediction error) entirely random or diameter size-class stratified approaches.Our results indicate that even limited sampling of heights can be used to refine height-diameter allometries. We recommend aiming for a conservative threshold of sampling 50 trees per location for height measurement, and including the ten trees with the largest diameter in this sample.
RESUMO
Tropical montane forests provide an important natural laboratory to test ecological theory. While it is well-known that some aspects of forest structure change with altitude, little is known on the effects of altitude on above ground biomass (AGB), particularly with regard to changing height-diameter allometry. To address this we investigate (1) the effects of altitude on height-diameter allometry, (2) how different height-diameter allometric models affect above ground biomass estimates; and (3) how other forest structural, taxonomic and environmental attributes affect above ground biomass using 30 permanent sample plots (1-ha; all trees ≥ 10 cm diameter measured) established between 1250 and 2600 m asl in Kahuzi Biega National Park in eastern Democratic Republic of Congo. Forest structure and species composition differed with increasing altitude, with four forest types identified. Different height-diameter allometric models performed better with the different forest types, as trees got smaller with increasing altitude. Above ground biomass ranged from 168 to 290 Mg ha-1, but there were no significant differences in AGB between forests types, as tree size decreased but stem density increased with increasing altitude. Forest structure had greater effects on above ground biomass than forest diversity. Soil attributes (K and acidity, pH) also significantly affected above ground biomass. Results show how forest structural, taxonomic and environmental attributes affect above ground biomass in African tropical montane forests. They particularly highlight that the use of regional height-diameter models introduces significant biases in above ground biomass estimates, and that different height-diameter models might be preferred for different forest types, and these should be considered in future studies.
Assuntos
Biodiversidade , Biomassa , Florestas , Modelos Biológicos , Clima Tropical , CongoRESUMO
Tropical forests are global centres of biodiversity and carbon storage. Many tropical countries aspire to protect forest to fulfil biodiversity and climate mitigation policy targets, but the conservation strategies needed to achieve these two functions depend critically on the tropical forest tree diversity-carbon storage relationship. Assessing this relationship is challenging due to the scarcity of inventories where carbon stocks in aboveground biomass and species identifications have been simultaneously and robustly quantified. Here, we compile a unique pan-tropical dataset of 360 plots located in structurally intact old-growth closed-canopy forest, surveyed using standardised methods, allowing a multi-scale evaluation of diversity-carbon relationships in tropical forests. Diversity-carbon relationships among all plots at 1 ha scale across the tropics are absent, and within continents are either weak (Asia) or absent (Amazonia, Africa). A weak positive relationship is detectable within 1 ha plots, indicating that diversity effects in tropical forests may be scale dependent. The absence of clear diversity-carbon relationships at scales relevant to conservation planning means that carbon-centred conservation strategies will inevitably miss many high diversity ecosystems. As tropical forests can have any combination of tree diversity and carbon stocks both require explicit consideration when optimising policies to manage tropical carbon and biodiversity.
Assuntos
Biodiversidade , Carbono/análise , Florestas , Plantas/química , Plantas/classificação , África , América , Ásia , Clima TropicalRESUMO
Recent studies show widespread encroachment of forest into savannas with important consequences for the global carbon cycle and land-atmosphere interactions. However, little research has focused on in situ measurements of the successional sequence of savanna to forest in Africa. Using long-term inventory plots we quantify changes in vegetation structure, above-ground biomass (AGB) and biodiversity of trees ≥10 cm diameter over 20 years for five vegetation types: savanna; colonising forest (F1), monodominant Okoume forest (F2); young Marantaceae forest (F3); and mixed Marantaceae forest (F4) in Lopé National Park, central Gabon, plus novel 3D terrestrial laser scanning (TLS) measurements to assess forest structure differences. Over 20 years no plot changed to a new stage in the putative succession, but F1 forests strongly moved towards the structure, AGB and diversity of F2 forests. Overall, savanna plots showed no detectable change in structure, AGB or diversity using this method, with zero trees ≥10 cm diameter in 1993 and 2013. F1 and F2 forests increased in AGB, mainly as a result of adding recruited stems (F1) and increased Basal Area (F2), whereas F3 and F4 forests did not change substantially in structure, AGB or diversity. Critically, the stability of the F3 stage implies that this stage may be maintained for long periods. Soil carbon was low, and did not show a successional gradient as for AGB and diversity. TLS vertical plant profiles showed distinctive differences amongst the vegetation types, indicating that this technique can improve ecological understanding. We highlight two points: (i) as forest colonises, changes in biodiversity are much slower than changes in forest structure or AGB; and (ii) all forest types store substantial quantities of carbon. Multi-decadal monitoring is likely to be required to assess the speed of transition between vegetation types.