Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Parasitol Res ; 121(8): 2241-2252, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35641833

RESUMO

Tick-borne diseases are a major health problem worldwide and could become even more important in Europe in the future. Due to changing climatic conditions, ticks are assumed to be able to expand their ranges in Europe towards higher latitudes and altitudes, which could result in an increased occurrence of tick-borne diseases.There is a great interest to identify potential (new) areas of distribution of vector species in order to assess the future infection risk with vector-borne diseases, improve surveillance, to develop more targeted monitoring program, and, if required, control measures.Based on an ecological niche modelling approach we project the climatic suitability for the three tick species Ixodes ricinus, Dermacentor reticulatus and Dermacentor marginatus under current and future climatic conditions in Europe. These common tick species also feed on humans and livestock and are vector competent for a number of pathogens.For niche modelling, we used a comprehensive occurrence data set based on several databases and publications and six bioclimatic variables in a maximum entropy approach. For projections, we used the most recent IPCC data on current and future climatic conditions including four different scenarios of socio-economic developments.Our models clearly support the assumption that the three tick species will benefit from climate change with projected range expansions towards north-eastern Europe and wide areas in central Europe with projected potential co-occurrence.A higher tick biodiversity and locally higher abundances might increase the risk of tick-borne diseases, although other factors such as pathogen prevalence and host abundances are also important.


Assuntos
Dermacentor , Ixodes , Doenças Transmitidas por Carrapatos , Animais , Mudança Climática , Ecossistema , Europa (Continente) , Humanos , Doenças Transmitidas por Carrapatos/epidemiologia
2.
Parasitol Res ; 118(3): 1073-1076, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30734861

RESUMO

Aedes koreicus, a mosquito species originating from Japan, China, Korea, and parts of Russia, has been sporadically found in Europe since 2008. It is suspected to be a vector of a variety of viruses and nematodes. In Germany, one individual was found in 2015 in the city of Augsburg, situated in the federal state of Bavaria. Based on morphological and molecular species identification, this study reports a new finding of Ae. koreicus, about 370 km northwest from Augsburg. The sampling point is located in the city of Wiesbaden, in the federal state of Hesse, where four individuals were found over a period of 2 months in 2017. The re-finding of the species in the same location in May and July 2018 suggests that (a) the species was able to reproduce and overwinter at this site, and (b) spreading of non-native mosquito species is an ongoing process in Germany, which requires close monitoring.


Assuntos
Aedes/fisiologia , Espécies Introduzidas , Mosquitos Vetores/fisiologia , Aedes/classificação , Distribuição Animal , Animais , Vetores de Doenças , Alemanha , Mosquitos Vetores/classificação
3.
Parasitol Res ; 115(3): 957-64, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26634351

RESUMO

Climatic changes raise the risk of re-emergence of arthropod-borne virus outbreaks globally. These viruses are transmitted by arthropod vectors, often mosquitoes. Due to increasing worldwide trade and tourism, these vector species are often accidentally introduced into many countries beyond their former distribution range. Aedes albopictus, a well-known disease vector, was detected for the first time in Germany in 2007, but seems to have failed establishment until today. However, the species is known to occur in other temperate regions and a risk for establishment in Germany remains, especially in the face of predicted climate change. Thus, the goal of the study was to estimate the potential distribution of Ae. albopictus in Germany. We used ecological niche modeling in order to estimate the potential habitat suitability for this species under current and projected future climatic conditions. According to our model, there are already two areas in western and southern Germany that appear suitable for Ae. albopictus under current climatic conditions. One of these areas lies in Baden-Wuerttemberg, the other in North-Rhine Westphalia in the Ruhr region. Furthermore, projections under future climatic conditions show an increase of the modeled habitat suitability throughout Germany. Ae. albopictus is supposed to be better acclimated to colder temperatures than other tropical vectors and thus, might become, triggered by climate change, a serious threat to public health in Germany. Our modeling results can help optimizing the design of monitoring programs currently in place in Germany.


Assuntos
Aedes/crescimento & desenvolvimento , Arbovírus/fisiologia , Ecossistema , Insetos Vetores/crescimento & desenvolvimento , Aedes/virologia , Animais , Mudança Climática , Alemanha , Humanos , Insetos Vetores/virologia , Modelos Teóricos , Saúde Pública
4.
Parasitol Res ; 114(3): 1051-61, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25579658

RESUMO

Today, international travel and global freight transportation are increasing and have a direct influence on the introduction and establishment of non-native mosquito species as well as on the spread of arthropod (mosquito)-borne diseases inside Europe. One of the mosquito species that has become invasive in many areas is the Asian rock pool or bush mosquito Ochlerotatus japonicus japonicus (synonyms: Aedes japonicus japonicus or Hulecoeteomyia japonica japonica). This species was detected in Germany in 2008 for the first time. Until today, three different Oc. j. japonicus populations have been documented. Laboratory studies have shown that Oc. j. japonicus can act as a vector for a variety of disease agents. Thus, the knowledge on its current distribution is essential for different measurements. In the present study, ecological niche models were used to estimate the potential distribution of Oc. j. japonicus in Germany. The aim was to detect areas within Germany that could potentially function as habitats for this species. According to our model, areas in western, southern, and central Germany offer suitable conditions for the mosquito and may therefore be at risk for an invasion of the species. We strongly suggest that those areas should be monitored more intensively in the future. For this purpose, it would also be essential to search for possible dispersal routes as well as for natural barriers.


Assuntos
Insetos Vetores/fisiologia , Ochlerotatus/fisiologia , Distribuição Animal , Animais , Arbovírus , Ecossistema , Alemanha , Modelos Biológicos
5.
Sci Total Environ ; 917: 170454, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38290683

RESUMO

The black fly genus Simulium includes medically and ecologically important species, characterized by a wide variation of ecological niches largely determining their distributional patterns. In a rapidly changing environment, species-specific niche characteristics determine whether a species benefits or not. With aquatic egg, larval and pupal stages followed by a terrestrial adult phase, their spatial arrangements depend upon the interplay of aquatic conditions and climatic-landscape parameters in the terrestrial realm. The aim of this study was to enhance the understanding of the distributional patterns among Simulium species and their ecological drivers. In an ecological niche modelling approach, we focused on 12 common black fly species with different ecological requirements. Our modelling was based on available distribution data along with five stream variables describing the climatic, land-cover, and topographic conditions of river catchments. The modelled freshwater habitat suitability was spatially interpolated to derive an estimate of the adult black flies' probability of occurrence. Based on similarities in the spatial patterns of modelled habitat suitability we were able to identify three biogeographical groups, which allows us to confirm old assessments with current occurrence data: (A) montane species, (B) broad range species and (C) lowland species. The five veterinary and human medical relevant species Simulium equinum, S. erythrocephalum, S. lineatum, S. ornatum and S. reptans are mainly classified in the lowland species group. In the course of climatic changes, it is expected that biocoenosis will slightly shift towards upstream regions, so that the lowland group will presumably emerge as the winner. This is mainly explained by wider ecological niches, including a higher temperature tolerance and tolerance to various pollutants. In conclusion, these findings have significant implications for human and animal health. As exposure to relevant Simulium species increases, it becomes imperative to remain vigilant, particularly in investigating the potential transmission of pathogens.


Assuntos
Simuliidae , Humanos , Animais , Larva , Ecossistema , Rios
6.
Int J Parasitol Parasites Wildl ; 24: 100935, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38638363

RESUMO

To demonstrate predation and potential impacts of raccoons on various species, a total of 108 raccoons from aquatic-associated nature reserves and natural areas in three federal states of Germany, Hesse (n = 36), Saxony-Anhalt (n = 36) and Brandenburg (n = 36), were investigated from a dietary ecological perspective in the present study. Fecal analyses and stomach content examinations were conducted for this purpose. Additionally, as a supplementary method for analyzing the dietary spectrum of raccoons, the parasite fauna was considered, as metazoan parasites, in particular, can serve as indicators for the species and origin of food organisms. While stomach content analyses allow for a detailed recording of trophic relationships solely at the time of sampling, parasitological examinations enable inferences about more distant interaction processes. With their different developmental stages and heteroxenous life cycles involving specific, sometimes obligate, intermediate hosts, they utilize the food web to reach their definitive host. The results of this study clearly demonstrate that spawning areas of amphibians and reptiles were predominantly utilized as food resources by raccoons in the study areas. Thus, common toad (Bufo bufo), common newt (Lissotriton vulgaris), grass frog (Rana temporaria), and grass snake (Natrix natrix) were identified as food organisms for raccoons. The detection of the parasite species Euryhelmis squamula, Isthmiophora melis, and Physocephalus sexalatus with partially high infestation rates also suggests that both amphibians and reptiles belong to the established dietary components of raccoons from an ecological perspective, as amphibians and reptiles are obligate intermediate hosts in the respective parasitic life cycles of the detected parasites. The study clearly demonstrates that raccoons have a significant impact on occurrence-sensitive animal species in certain areas and, as an invasive species, can exert a negative influence on native species and ecosystems.

7.
PeerJ ; 11: e15800, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37551343

RESUMO

Background: The discovery of cryptic species complexes within morphologically established species comes with challenges in the classification and handling of these species. We hardly know to what extent species within a species complex differ ecologically. Such knowledge is essential to assess the vulnerability of individual genetic lineages in the face of global change. The abiotic conditions, i.e., the Grinnellian niche that a genetic lineage colonizes, provides insights into how diverse the ecological requirements of each evolutionary lineage are within a species complex. Material and Methods: We sampled the cryptic species complex of the amphipod Gammarus roeselii from Central Germany to Greece and identified genetic lineages based on cytochrome c oxidase subunit I (COI) barcoding. At the same time, we recorded various abiotic parameters and local pollution parameters using a series of in vitro assays to then characterize the Grinnellian niches of the morphospecies (i.e., Gammarus roeselii sensu lato) as well as each genetic lineage. Local pollution can be a significant factor explaining current and future distributions in times of increasing production and release of chemicals into surface waters. Results: We identified five spatially structured genetic lineages in our dataset that differed to varying degrees in their Grinnellian niche. In some cases, the niches were very similar despite the geographical separation of lineages, supporting the hypothesis of niche conservatism while being allopatrically separated. In other cases, we found a small niche that was clearly different from those of other genetic lineages. Conclusion: The variable niches and overlaps of different dimensions make the G. roeselii species complex a promising model system to further study ecological, phenotypic and functional differentiation within this species complex. In general, our results show that the Grinnellian niches of genetically distinct molecular operational taxonomic units (MOTUs) within a cryptic species complex can differ significantly between each other, calling for closer inspection of cryptic species in a conservational and biodiversity context.


Assuntos
Anfípodes , Animais , Anfípodes/genética , Biodiversidade , Filogenia , Geografia , Evolução Biológica
8.
Water Res ; 243: 120388, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37517151

RESUMO

Wastewater treatment plants (WWTP) are essential infrastructure in our developing world. However, with the development and release of novel entities and without modern upgrades, they are ineffective at fully removing micropollutants before treated effluents are released back into aquatic environments. Thus, WWTPs may represent additional point source impacts to freshwater environments, further pressuring aquatic fauna and already vulnerable insect communities. Previous studies - mostly focusing on single WWTPs - have shown general trends of freshwater invertebrate communities becoming dominated by pollution tolerant taxa. To expand on these findings, the current study is the first to comprehensively investigate data on the effects of 170 WWTPs on invertebrate taxonomic composition. We compared data for several diversity and pollution indices, as well as the taxonomic composition both upstream and downstream of the WWTPs (366 sampling sites). In terms of abundance, the three most frequent and negatively impacted orders were the Plecoptera, Trichoptera and Gastropoda, while the Turbellaria, Hirudinea and Crustacea increased in abundance. Although strong changes in community composition were observed between upstream and downstream sites (mean species turnover of 61%), commonly used diversity indices were not sensitive to these changes, highlighting their potential inadequacy in accurately assessing ecological health. Our results indicate that WWTPs change downstream conditions in favour of pollution tolerant taxa to the detriment of sensitive taxa. Order-level taxonomic responses can be informative but should be interpreted with caution, since they can be driven by a few taxa, or opposing responses of species in the same group can result in an overall low order-level response. Upgrading WWTPs via additional treatment steps or merging may be beneficial, provided upstream sections are unimpacted and/or are in a good chemical and structural condition.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Animais , Águas Residuárias , Poluentes Químicos da Água/química , Invertebrados , Água Doce
9.
Int J Parasitol Parasites Wildl ; 20: 79-88, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36688078

RESUMO

The invasive raccoon (Procyon lotor) is an abundant carnivore and considered as an important potential vector of infectious diseases and parasites in Europe. Raccoons show a broad, opportunistic, omnivorous food spectrum. Food supply and habitat quality in urban areas are very attractive for the generalist raccoon. This inevitably leads to increased interaction with humans, domestic animals and livestock, making the raccoon a potentially suitable zoonosis vector. In its autochthonous range, especially in the Eastern and Midwestern United States, the raccoon has been studied very intensively since the beginning of the 20th century. Whereas, basic field biology and parasitology studies in Germany and Europe are lacking and have only been conducted sporadically, regionally and on small sample sizes. In the presented study 234 raccoons from central Germany were comprehensively examined for their metazoan parasite fauna. The present study shows for the first time an extremely diverse parasite fauna in raccoons outside their native range and proves their essential role as intermediate hosts and hosts for ecto- and endoparasites. A total of 23 different parasite species were identified, five of which are human pathogens, 14 of which are new for the parasite fauna of raccoons in Europe. The human pathogenic raccoon roundworm Baylisascaris procyonis is the most common parasite species in this study, with a prevalence of up to 95%. The digenetic trematode Plagiorchis muris, another human pathogenic parasite species, was detected for the first time in raccoons. The ongoing spread of invasive carnivores and the associated spread and transmission of their parasites and other pathogens increases the potential health risk of wild and farmed animals as well as humans. An increase in parasitic diseases in humans (e.g. raccoon roundworm) is to be expected, especially in urban areas, where raccoons are becoming more and more abundant.

10.
Ecol Evol ; 12(7): e9141, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35898420

RESUMO

In recent decades, a rapid range expansion of the golden jackal (Canis aureus) towards Northern and Western Europe has been observed. The golden jackal is a medium-sized canid, with a broad and flexible diet. Almost 200 different parasite species have been reported worldwide from C. aureus, including many parasites that are shared with dogs and cats and parasite species of public health concern. As parasites may follow the range shifts of their host, the range expansion of the golden jackal could be accompanied by changes in the parasite fauna in the new ecosystems. In the new distribution area, the golden jackal could affect ecosystem equilibrium, e.g., through changed competition situations or predation pressure. In a niche modeling approach, we project the future climatic habitat suitability of the golden jackal in Europe in the context of whether climatic changes promote range expansion. We use an ensemble forecast based on six presence-absence algorithms to estimate the climatic suitability of C. aureus for different time periods up to the year 2100 considering different IPCC scenarios on future development. As predictor variables, we used six bioclimatic variables provided by worldclim. Our results clearly indicate that areas with climatic conditions analogous to those of the current core distribution area of the golden jackal in Europe will strongly expand towards the north and the west in future decades. Thus, the observed range expansion may be favored by climate change. The occurrence of stable populations can be expected in Central Europe. With regard to biodiversity and public health concerns, the population and range dynamics of the golden jackal should be surveyed. Correlative niche models provide a useful and frequently applied tool for this purpose. The results can help to make monitoring more efficient by identifying areas with suitable habitat and thus a higher probability of occurrence.

11.
Acta Parasitol ; 67(1): 218-232, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34275092

RESUMO

BACKGROUND: Studies of parasite communities and patterns in the Antarctic are an important knowledge base with the potential to track shifts in ecological relations and study the effects of climate change on host-parasite systems. Endemic Nototheniinae is the dominant fish group found in Antarctic marine habitats. Through their intermediate position within the food web, Nototheniinae link lower to higher trophic levels and thereby also form an important component of parasite life cycles. The study was set out to gain insight into the parasite fauna of Nototheniops larseni, N. nudifrons and Lepidonotothen squamifrons (Nototheniinae) from Elephant Island (Antarctica). METHODS: Sampling was conducted at three locations around Elephant Island during the ANT-XXVIII/4 expedition of the research vessel Polarstern. The parasite fauna of three Nototheniine species was analysed, and findings were compared to previous parasitological and ecological research collated from a literature review. RESULTS: All host species shared the parasites Neolebouria antarctica (Digenea), Corynosoma bullosum (Acanthocephala) and Pseudoterranova decipiens E (Nematoda). Other parasite taxa were exclusive to one host species in this study. Nototheniops nudifrons was infected by Ascarophis nototheniae (Nematoda), occasional infections of N. larseni with Echinorhynchus petrotschenkoi (Acanthocephala) and L. squamifrons with Elytrophalloides oatesi (Digenea) and larval tetraphyllidean Cestoda were detected. CONCLUSION: All examined fish species' parasites were predominantly euryxenous regarding their fish hosts. The infection of Lepidonotothen squamifrons with Lepidapedon garrardi (Digenea) and Nototheniops larseni with Echinorhynchus petrotschenkoi represent new host records. Despite the challenges and limited opportunities for fishing in remote areas, future studies should continue sampling on a more regular basis and include a larger number of fish species and sampling sites within different habitats.


Assuntos
Ascaridoidea , Doenças dos Peixes , Parasitos , Perciformes , Trematódeos , Animais , Regiões Antárticas , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/parasitologia , Interações Hospedeiro-Parasita , Perciformes/parasitologia
12.
Ecol Evol ; 11(24): 18369-18400, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35003679

RESUMO

AIM: Formerly introduced for their presumed value in controlling mosquito-borne diseases, the two mosquitofish Gambusia affinis and G. holbrooki (Poeciliidae) are now among the world's most widespread invasive alien species, negatively impacting aquatic ecosystems around the world. These inconspicuous freshwater fish are, once their presence is noticed, difficult to eradicate. It is, therefore, of utmost importance to assess their geographic potential and to identify their likely ability to persist under novel climatic conditions. LOCATION: Global. METHODS: We build species distribution models using occurrence data from the native and introduced distribution ranges to identify putative niche shifts and further ascertain the areas climatically suitable for the establishment and possible spread of mosquitofish. RESULTS: We found significant niche expansions into climatic regions outside their natural climatic conditions, emphasizing the importance of integrating climatic niches of both native and invasive ranges into projections. In particular, there was a marked shift toward tropical regions in Asia and a clear niche shift of European G. holbrooki. This ecological flexibility partly explains the massive success of the two species, and substantially increases the risk for further range expansion. We also showed that the potential for additional expansion resulting from climate change is enormous-especially in Europe. MAIN CONCLUSIONS: Despite the successful invasion history and ongoing range expansions, many countries still lack proper preventive measures. Thus, we urge policy makers to carefully evaluate the risk both mosquitofish pose to a particular area and to initiate appropriate management strategies.

13.
PeerJ ; 9: e12422, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34993011

RESUMO

BACKGROUND: In the face of ongoing climate warming, vector-borne diseases are expected to increase in Europe, including tick-borne diseases (TBD). The most abundant tick-borne diseases in Germany are Tick-Borne Encephalitis (TBE) and Lyme Borreliosis (LB), with Ixodes ricinus as the main vector. METHODS: In this study, we display and compare the spatial and temporal patterns of reported cases of human TBE and LB in relation to some associated factors. The comparison may help with the interpretation of observed spatial and temporal patterns. RESULTS: The spatial patterns of reported TBE cases show a clear and consistent pattern over the years, with many cases in the south and only few and isolated cases in the north of Germany. The identification of spatial patterns of LB disease cases is more difficult due to the different reporting practices in the individual federal states. Temporal patterns strongly fluctuate between years, and are relatively synchronized between both diseases, suggesting common driving factors. Based on our results we found no evidence that weather conditions affect the prevalence of both diseases. Both diseases show a gender bias with LB bing more commonly diagnosed in females, contrary to TBE being more commonly diagnosed in males. CONCLUSION: For a further investigation of of the underlying driving factors and their interrelations, longer time series as well as standardised reporting and surveillance system would be required.

14.
Parasit Vectors ; 13(1): 461, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32912281

RESUMO

BACKGROUND: More than 170 species of tabanids are known in Europe, with many occurring only in limited areas or having become very rare in the last decades. They continue to spread various diseases in animals and are responsible for livestock losses in developing countries. The current monitoring and recording of horseflies is mainly conducted throughout central Europe, with varying degrees of frequency depending on the country. To the detriment of tabanid research, little cooperation exists between western European and Eurasian countries. METHODS: For these reasons, we have compiled available sources in order to generate as complete a dataset as possible of six horsefly species common in Europe. We chose Haematopota pluvialis, Chrysops relictus, C. caecutiens, Tabanus bromius, T. bovinus and T. sudeticus as ubiquitous and abundant species within Europe. The aim of this study is to estimate the distribution, land cover usage and niches of these species. We used a surface-range envelope (SRE) model in accordance with our hypothesis of an underestimated distribution based on Eurocentric monitoring regimes. RESULTS: Our results show that all six species have a wide range in Eurasia, have a broad climatic niche and can therefore be considered as widespread generalists. Areas with modelled habitat suitability cover the observed distribution and go far beyond these. This supports our assumption that the current state of tabanid monitoring and the recorded distribution significantly underestimates the actual distribution. Our results show that the species can withstand extreme weather and climatic conditions and can be found in areas with only a few frost-free months per year. Additionally, our results reveal that species prefer certain land-cover environments and avoid other land-cover types. CONCLUSIONS: The SRE model is an effective tool to calculate the distribution of species that are well monitored in some areas but poorly in others. Our results support the hypothesis that the available distribution data underestimate the actual distribution of the surveyed species.


Assuntos
Dípteros/classificação , Dípteros/fisiologia , Distribuição Animal , Animais , Clima , Ecossistema , Europa (Continente) , Estações do Ano
15.
Pest Manag Sci ; 76(5): 1814-1822, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31814250

RESUMO

BACKGROUND: There is great interest in modelling the distribution of invasive species, particularly from the point of view of management. However, distribution modelling for invasive species using ecological niche models (ENMs) involves multiple challenges. Owing to the short time span since the introduction or arrival of a non-indigenous species and the associated dispersal limitations, applying regular ENMs at an early stage of the invasion process may result in an underestimation of the potential niche in the new ranges. This topic is dealt with here using the example of Aedes japonicus japonicus, a vector competent mosquito species for a number of diseases. RESULTS: We found high niche unfilling for the species' non-native range niches in Europe and North America compared with the native range niche, which can be explained by the early stage of the invasion process. Comparing four different ENMs based on: (i) the European and (ii) the North American non-native range occurrence data, (iii) (derived) native range occurrence data, and (iv) all available occurrence data together, we found large differences in the projected climatic suitability, with the global data model projecting larger areas with climatic suitability. CONCLUSION: ENM in biological invasions can be challenging, especially when distribution data are only poorly available. We suggest one possible way to project climatic suitability for Aedes j. japonicus despite poor data availability for the non-native ranges and missing occurrences from the native range. We discuss aspects of the lack of information and the associated implications for modelling. © 2020 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Aedes , Animais , Ecossistema , Europa (Continente) , Espécies Introduzidas , Mosquitos Vetores , América do Norte
16.
Sci Rep ; 10(1): 14268, 2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32868789

RESUMO

The genus Ebolavirus comprises some of the deadliest viruses for primates and humans and associated disease outbreaks are increasing in Africa. Different evidence suggests that bats are putative reservoir hosts and play a major role in the transmission cycle of these filoviruses. Thus, detailed knowledge about their distribution might improve risk estimations of where future disease outbreaks might occur. A MaxEnt niche modelling approach based on climatic variables and land cover was used to investigate the potential distribution of 9 bat species associated to the Zaire ebolavirus. This viral species has led to major Ebola outbreaks in Africa and is known for causing high mortalities. Modelling results suggest suitable areas mainly in the areas near the coasts of West Africa with extensions into Central Africa, where almost all of the 9 species studied find suitable habitat conditions. Previous spillover events and outbreak sites of the virus are covered by the modelled distribution of 3 bat species that have been tested positive for the virus not only using serology tests but also PCR methods. Modelling the habitat suitability of the bats is an important step that can benefit public information campaigns and may ultimately help control future outbreaks of the disease.


Assuntos
Quirópteros/virologia , Reservatórios de Doenças/virologia , Ebolavirus/fisiologia , Ecossistema , África Subsaariana/epidemiologia , Animais , Surtos de Doenças , Doença pelo Vírus Ebola/epidemiologia , Humanos
17.
Elife ; 92020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32374263

RESUMO

The Triatominae are vectors for Trypanosoma cruzi, the aetiological agent of the neglected tropical Chagas disease. Their distribution stretches across Latin America, with some species occurring outside of the Americas. In particular, the cosmopolitan vector, Triatoma rubrofasciata, has already been detected in many Asian and African countries. We applied an ensemble forecasting niche modelling approach to project the climatic suitability of 11 triatomine species under current climate conditions on a global scale. Our results revealed potential hotspots of triatomine species diversity in tropical and subtropical regions between 21°N and 24°S latitude. We also determined the climatic suitability of two temperate species (T. infestans, T. sordida) in Europe, western Australia and New Zealand. Triatoma rubrofasciata has been projected to find climatically suitable conditions in large parts of coastal areas throughout Latin America, Africa and Southeast Asia, emphasising the importance of an international vector surveillance program in these regions.


Assuntos
Doença de Chagas/parasitologia , Clima , Ecossistema , Saúde Global , Insetos Vetores/parasitologia , Modelos Teóricos , Triatominae/parasitologia , Trypanosoma cruzi/patogenicidade , Animais , Doença de Chagas/epidemiologia , Doença de Chagas/transmissão , Humanos
18.
Sci Rep ; 10(1): 10276, 2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32581278

RESUMO

The Culex pipiens complex encompasses five species and subspecies of the genus Culex. Over time, a multitude of morphologically indistinguishable species has been assigned to this complex with several species being classified as important vectors for different diseases. Some species of this complex hibernate in subterranean habitats, and it has been proven that viruses can survive this phase of hibernation. However, studies focusing on the environmental requirements, ecology and spatial and temporal distribution patterns of mosquitos in underground habitats are sparse. Here, we investigate the main environmental factors and dependencies of Culex, considering the number of individuals and survival probabilities in underground habitats during the winter months. Methods. Since the State of Hesse, Germany harbors about 3500 to 4000 subterranean shelters ample availability of subterranean habitats there provides a good opportunity to conduct detailed investigations of the Culex pipiens complex. In this study, we identified a sample of 727 specimens of overwintering females within the Culex pipiens complex from 52 different underground sites collected over a period of 23 years using qPCR. A complete data set of samplings of hibernating mosquitos from 698 subterranean habitats in Central Germany over the same period was available to study the spatial and temporal patterns and the effect of temperature and precipitation conditions on these hibernating populations using a generalized linear model (GLM). Results. Our qPCR-results show, similar to aboveground studies of mosquitos, that Culex pipiens pipiens and Culex torrentium occur sympatrically. On the other hand, Culex pipiens molestus occurred very rarely. The GLM revealed no shifts in species composition over time, but different preferences for subterranean hibernacula, chemical effects on overwintering populations as well as effects of annual and seasonal mean temperature and precipitation during the active phase from March to November. Cx. p. pipiens and Cx. torrentium are the most common species within Hessian caves and other underground habitats during winter. They co-occur with different frequency without any patterns in species composition. Weather conditions influence the number of overwintering mosquitos during the activity phase. Depending on cave parameters, the number of mosquitos decreases during the winter months.


Assuntos
Culex/fisiologia , Hibernação , Mosquitos Vetores/fisiologia , Distribuição Animal , Animais , Cavernas , Conjuntos de Dados como Assunto , Feminino , Alemanha , Masculino , Chuva , Estações do Ano , Análise Espacial , Temperatura
19.
Sci Rep ; 9(1): 9851, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-31285445

RESUMO

Environmental niche modelling is an acclaimed method for estimating species' present or future distributions. However, in marine environments the assembly of representative data from reliable and unbiased occurrences is challenging. Here, we aimed to model the environmental niche and distribution of marine, parasitic nematodes from the Pseudoterranova decipiens complex using the software Maxent. The distribution of these potentially zoonotic species is of interest, because they infect the muscle tissue of host species targeted by fisheries. To achieve the best possible model, we used two different approaches. The land distance (LD) model was based on abiotic data, whereas the definitive host distance (DHD) model included species-specific biotic data. To assess whether DHD is a suitable descriptor for Pseudoterranova spp., the niches of the parasites and their respective definitive hosts were analysed using ecospat. The performance of LD and DHD was compared based on the variables' contribution to the model. The DHD-model clearly outperformed the LD-model. While the LD-model gave an estimate of the parasites' niches, it only showed the potential distribution. The DHD-model produced an estimate of the species' realised distribution and indicated that biotic variables can help to improve the modelling of data-poor, marine species.


Assuntos
Organismos Aquáticos/classificação , Parasitos/classificação , Animais , Ecossistema , Pesqueiros , Peixes/parasitologia , Especificidade de Hospedeiro/fisiologia , Especificidade da Espécie
20.
PeerJ ; 7: e7920, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31745446

RESUMO

BACKGROUND: Zika is of great medical relevance due to its rapid geographical spread in 2015 and 2016 in South America and its serious implications, for example, certain birth defects. Recent epidemics urgently require a better understanding of geographic patterns of the Zika virus transmission risk. This study aims to map the Zika virus transmission risk in South and Central America. We applied the maximum entropy approach, which is common for species distribution modelling, but is now also widely in use for estimating the geographical distribution of infectious diseases. METHODS: As predictor variables we used a set of variables considered to be potential drivers of both direct and indirect effects on the emergence of Zika. Specifically, we considered (a) the modelled habitat suitability for the two main vector species Aedes aegypti and Ae. albopictus as a proxy of vector species distributions; (b) temperature, as it has a great influence on virus transmission; (c) commonly called evidence consensus maps (ECM) of human Zika virus infections on a regional scale as a proxy for virus distribution; (d) ECM of human dengue virus infections and, (e) as possibly relevant socio-economic factors, population density and the gross domestic product. RESULTS: The highest values for the Zika transmission risk were modelled for the eastern coast of Brazil as well as in Central America, moderate values for the Amazon basin and low values for southern parts of South America. The following countries were modelled to be particularly affected: Brazil, Colombia, Cuba, Dominican Republic, El Salvador, Guatemala, Haiti, Honduras, Jamaica, Mexico, Puerto Rico and Venezuela. While modelled vector habitat suitability as predictor variable showed the highest contribution to the transmission risk model, temperature of the warmest quarter contributed only comparatively little. Areas with optimal temperature conditions for virus transmission overlapped only little with areas of suitable habitat conditions for the two main vector species. Instead, areas with the highest transmission risk were characterised as areas with temperatures below the optimum of the virus, but high habitat suitability modelled for the two main vector species. CONCLUSION: Modelling approaches can help estimating the spatial and temporal dynamics of a disease. We focused on the key drivers relevant in the Zika transmission cycle (vector, pathogen, and hosts) and integrated each single component into the model. Despite the uncertainties generally associated with modelling, the approach applied in this study can be used as a tool and assist decision making and managing the spread of Zika.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA