Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Pathog ; 17(4): e1009567, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33909709

RESUMO

Histones are rapidly loaded on the HSV genome upon entry into the nucleus of human fibroblasts, but the effects of histone loading on viral replication have not been fully defined. We showed recently that ATRX is dispensable for de novo deposition of H3 to HSV genomes after nuclear entry but restricted infection through maintenance of viral heterochromatin. To further investigate the roles that ATRX and other histone H3 chaperones play in restriction of HSV, we infected human fibroblasts that were systematically depleted of nuclear H3 chaperones. We found that the ATRX/DAXX complex is unique among nuclear H3 chaperones in its capacity to restrict ICP0-null HSV infection. Only depletion of ATRX significantly alleviated restriction of viral replication. Interestingly, no individual nuclear H3 chaperone was required for deposition of H3 onto input viral genomes, suggesting that during lytic infection, H3 deposition may occur through multiple pathways. ChIP-seq for total histone H3 in control and ATRX-KO cells infected with ICP0-null HSV showed that HSV DNA is loaded with high levels of histones across the entire viral genome. Despite high levels of H3, ATAC-seq analysis revealed that HSV DNA is highly accessible, especially in regions of high GC content, and is not organized largely into ordered nucleosomes during lytic infection. ATRX reduced accessibility of viral DNA to the activity of a TN5 transposase and enhanced accumulation of viral DNA fragment sizes associated with nucleosome-like structures. Together, these findings support a model in which ATRX restricts viral infection by altering the structure of histone H3-loaded viral chromatin that reduces viral DNA accessibility for transcription. High GC rich regions of the HSV genome, especially the S component inverted repeats of the HSV-1 genome, show increased accessibility, which may lead to increased ability to transcribe the IE genes encoded in these regions during initiation of infection.


Assuntos
Herpesvirus Humano 1/fisiologia , Replicação Viral/genética , Proteína Nuclear Ligada ao X/fisiologia , Células Cultivadas , Regulação Viral da Expressão Gênica/genética , Genoma Viral/genética , Herpes Simples/genética , Herpes Simples/patologia , Herpes Simples/virologia , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Heterocromatina/metabolismo , Histonas/metabolismo , Interações Hospedeiro-Patógeno/genética , Humanos , Fenômenos Fisiológicos Virais/genética
2.
J Invest Dermatol ; 142(10): 2783-2792.e15, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35331717

RESUMO

Polycomb repressive complex 2 has a critical role in the maintenance of bivalent promoters and is often perturbed in cancer, including neuroendocrine tumors. In this study, we investigated the susceptibility of Merkel cell carcinoma (MCC), a neuroendocrine carcinoma of the skin, to inhibitors of the Polycomb repressive complex 2 catalytic subunit EZH2. We show that a subset of MCC cell lines is sensitive to EZH2 inhibitor-induced cell viability loss. We find that inhibitor treatment of susceptible cells derepresses the Polycomb repressive complex 2 target SIX1, a transcription factor in the PAX-SIX-EYA-DACH network normally involved in inner ear hair cell development, and that PAX-SIX-EYA-DACH network transcription factors are critical contributors to EZH2 inhibitor-induced MCC cell viability loss. Furthermore, we show the EZH2 inhibitor tazemetostat slows the growth of MCC xenografts and derepresses SIX1 and its downstream inner ear transcriptional target MYO6 in vivo. We propose that EZH2 inhibition in MCC leads to SIX1 derepression with dysregulation of hearing-related transcriptional programs and growth inhibition. This study provides evidence that MCC tumors may be specifically susceptible to EZH2 inhibitors, while giving mechanistic insight into the transcriptional programs these inhibitors perturb in MCC, and potentially in other neuroendocrine cancers.


Assuntos
Carcinoma de Célula de Merkel , Neoplasias Cutâneas , Carcinoma de Célula de Merkel/tratamento farmacológico , Carcinoma de Célula de Merkel/genética , Cicloexilaminas , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Complexo Repressor Polycomb 2/metabolismo , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia
3.
Viruses ; 14(1)2021 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-35062263

RESUMO

Merkel cell polyomavirus (MCV) is the causative agent for the majority of Merkel cell carcinoma (MCC) cases. Polyomavirus-associated MCC (MCCP) is characterized by the integration of MCV DNA into the tumor genome and a low tumor mutational burden. In contrast, nonviral MCC (MCCN) is characterized by a high tumor mutational burden induced by UV damage. Since the discovery of MCV, much work in the field has focused on understanding the molecular mechanisms of oncogenesis driven by the MCV tumor (T) antigens. Here, we review our current understanding of how the activities of large T (LT) and small T (ST) promote MCC oncogenesis in the absence of genomic instability. We highlight how both LT and ST inhibit tumor suppressors to evade growth suppression, an important cancer hallmark. We discuss ST interactions with cellular proteins, with an emphasis on those that contribute to sustaining proliferative signaling. Finally, we examine active areas of research into open questions in the field, including the origin of MCC and mechanisms of viral integration.


Assuntos
Carcinogênese/genética , Carcinoma de Célula de Merkel/virologia , Poliomavírus das Células de Merkel/genética , Antígenos Virais de Tumores/genética , Transformação Celular Neoplásica , Vírus de DNA , Genoma Viral , Instabilidade Genômica , Humanos , Neoplasias Cutâneas/virologia , Infecções Tumorais por Vírus/virologia , Integração Viral
4.
Virus Res ; 252: 48-57, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29782878

RESUMO

Many viruses make use of, and even direct, the ubiquitin-proteasome system to facilitate the generation of a cellular environment favorable for virus replication, while host cells use selected protein ubiquitylation pathways for antiviral defense. Relatively little information has been acquired, however, regarding the extent to which protein ubiquitylation determines the replication success of picornaviruses. Here we report that the ubiquitin-protein ligase E6AP/UBE3A, recently shown to be a participant in encephalomyocarditis virus (EMCV) 3C protease concentration regulation, also facilitates the early stages of EMCV replication, probably by a mechanism that does not involve 3C protease ubiquitylation. Using stably transfected E6AP knockdown cells, we found that reduced E6AP concentration extends the time required for infected cells to undergo the morphological changes caused by virally induced pathogenesis and to begin the production of infectious virions. This lag in virion production is accompanied by a corresponding delay in the appearance of detectable levels of viral proteins and RNA. We also found, by using both immunofluorescence microscopy and cell fractionation, that E6AP is partially redistributed from the nucleus to the cytoplasm in EMCV-infected cells, thereby increasing its availability to participate in cytoplasmic virus replication processes.


Assuntos
Vírus da Encefalomiocardite/fisiologia , Ubiquitina-Proteína Ligases/genética , Replicação Viral , Animais , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Citoplasma/virologia , Replicação do DNA , Imunofluorescência , Interações Hospedeiro-Patógeno , Camundongos , Células NIH 3T3 , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA