Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 300(8): 107573, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39009340

RESUMO

Galectins (Gals), a family of multifunctional glycan-binding proteins, have been traditionally defined as ß-galactoside binding lectins. However, certain members of this family have shown selective affinity toward specific glycan structures including human milk oligosaccharides (HMOs) and blood group antigens. In this work, we explored the affinity of human galectins (particularly Gal-1, -3, -4, -7, and -12) toward a panel of oligosaccharides including HMOs and blood group antigens using a complementary approach based on both experimental and computational techniques. While prototype Gal-1 and Gal-7 exhibited differential affinity for type I versus type II Lac/LacNAc residues and recognized fucosylated neutral glycans, chimera-type Gal-3 showed high binding affinity toward poly-LacNAc structures including LNnH and LNnO. Notably, the tandem-repeat human Gal-12 showed preferential recognition of 3-fucosylated glycans, a unique feature among members of the galectin family. Finally, Gal-4 presented a distinctive glycan-binding activity characterized by preferential recognition of specific blood group antigens, also validated by saturation transfer difference nuclear magnetic resonance experiments. Particularly, we identified oligosaccharide blood group A antigen tetraose 6 (BGA6) as a biologically relevant Gal-4 ligand, which specifically inhibited interleukin-6 secretion induced by this lectin on human peripheral blood mononuclear cells. These findings highlight unique determinants underlying specific recognition of HMOs and blood group antigens by human galectins, emphasizing the biological relevance of Gal-4-BGA6 interactions, with critical implications in the development and regulation of inflammatory responses.


Assuntos
Antígenos de Grupos Sanguíneos , Galectina 4 , Galectinas , Leite Humano , Oligossacarídeos , Humanos , Leite Humano/metabolismo , Leite Humano/química , Oligossacarídeos/metabolismo , Oligossacarídeos/química , Antígenos de Grupos Sanguíneos/metabolismo , Antígenos de Grupos Sanguíneos/química , Galectinas/metabolismo , Galectinas/química , Ligantes , Galectina 4/metabolismo , Galectina 4/química , Ligação Proteica , Interleucina-6/metabolismo
2.
Glycobiology ; 34(9)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39088584

RESUMO

The limited availability of efficient treatments for Candida infections and the increased emergence of antifungal-resistant strains stimulates the search for new antifungal agents. We have previously isolated a sunflower mannose-binding lectin (Helja) with antifungal activity against Candida albicans, capable of binding mannose-bearing oligosaccharides exposed on the cell surface. This work aimed to investigate the biological and biophysical basis of Helja's binding to C. albicans cell wall mannans and its influence on the fungicidal activity of the lectin. We evaluated the interaction of Helja with the cell wall mannans extracted from the isogenic parental strain (WT) and a glycosylation-defective C. albicans with altered cell wall phosphomannosylation (mnn4∆ null mutants) and investigated its antifungal effect. Helja exhibited stronger antifungal activity on the mutant strain, showing greater inhibition of fungal growth, loss of cell viability, morphological alteration, and formation of clusters with agglutinated cells. This differential biological activity of Helja was correlated with the biophysical parameters determined by solid phase assays and isothermal titration calorimetry, which demonstrated that the lectin established stronger interactions with the cell wall mannans of the mnn4∆ null mutant than with the WT strain. In conclusion, our results provide new evidence on the nature of the Helja molecular interactions with cell wall components, i.e. phosphomannan, and its impact on the antifungal activity. This study highlights the relevance of plant lectins in the design of effective antifungal therapies.


Assuntos
Antifúngicos , Candida albicans , Parede Celular , Antifúngicos/farmacologia , Antifúngicos/química , Candida albicans/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Lectinas de Plantas/química , Lectinas de Plantas/farmacologia , Helianthus/química , Mananas/química , Mananas/farmacologia , Mananas/metabolismo , Testes de Sensibilidade Microbiana
3.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34006646

RESUMO

Colorectal cancer (CRC) represents the third most common malignancy and the second leading cause of cancer-related deaths worldwide. Although immunotherapy has taken center stage in mainstream oncology, it has shown limited clinical efficacy in CRC, generating an urgent need for discovery of new biomarkers and potential therapeutic targets. Galectin-1 (Gal-1), an endogenous glycan-binding protein, induces tolerogenic programs and contributes to tumor cell evasion of immune responses. Here, we investigated the relevance of Gal-1 in CRC and explored its modulatory activity within the CD8+ regulatory T cell (Treg) compartment. Mice lacking Gal-1 (Lgals1-/- ) developed a lower number of tumors and showed a decreased frequency of a particular population of CD8+CD122+PD-1+ Tregs in the azoxymethane-dextran sodium sulfate model of colitis-associated CRC. Moreover, silencing of tumor-derived Gal-1 in the syngeneic CT26 CRC model resulted in reduced number and attenuated immunosuppressive capacity of CD8+CD122+PD-1+ Tregs, leading to slower tumor growth. Moreover, stromal Gal-1 also influenced the fitness of CD8+ Tregs, highlighting the contribution of both tumor and stromal-derived Gal-1 to this immunoregulatory effect. Finally, bioinformatic analysis of a colorectal adenocarcinoma from The Cancer Genome Atlas dataset revealed a particular signature characterized by high CD8+ Treg score and elevated Gal-1 expression, which delineates poor prognosis in human CRC. Our findings identify CD8+CD122+PD-1+ Tregs as a target of the immunoregulatory activity of Gal-1, suggesting a potential immunotherapeutic strategy for the treatment of CRC.


Assuntos
Adenocarcinoma/genética , Linfócitos T CD8-Positivos/imunologia , Colite/genética , Neoplasias Colorretais/genética , Galectina 1/genética , Linfócitos T Reguladores/imunologia , Adenocarcinoma/imunologia , Adenocarcinoma/mortalidade , Adenocarcinoma/patologia , Animais , Atlas como Assunto , Azoximetano/administração & dosagem , Linfócitos T CD8-Positivos/patologia , Linhagem Celular Tumoral , Colite/induzido quimicamente , Colite/imunologia , Colite/mortalidade , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Biologia Computacional , Sulfato de Dextrana/administração & dosagem , Modelos Animais de Doenças , Galectina 1/deficiência , Galectina 1/imunologia , Regulação Neoplásica da Expressão Gênica , Humanos , Subunidade beta de Receptor de Interleucina-2/genética , Subunidade beta de Receptor de Interleucina-2/imunologia , Camundongos , Camundongos Knockout , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia , Transdução de Sinais , Análise de Sobrevida , Linfócitos T Reguladores/patologia , Carga Tumoral
4.
Glycobiology ; 31(8): 891-907, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-33498084

RESUMO

The relevance of glycan-binding proteins in immune tolerance and inflammation has been well established, mainly by studies of C-type lectins, siglecs and galectins, both in experimental models and patient samples. Galectins, a family of evolutionarily conserved lectins, are characterized by sequence homology in the carbohydrate-recognition domain, atypical secretion via an endoplasmic reticulum-Golgi-independent pathway and by the ability to recognize ß-galactoside-containing saccharides. Galectin-1 (Gal-1), a prototype member of this family, displays mainly anti-inflammatory and immunosuppressive activities, although, similar to many cytokines and growth factors, it may also trigger paradoxical pro-inflammatory effects under certain circumstances. These dual effects could be associated to tissue-, time- or context-dependent regulation of galectin expression and function, including particular pathophysiologic settings and/or environmental conditions influencing the structure of this lectin, as well as the availability of glycosylated ligands in immune cells during the course of inflammatory responses. Here, we discuss the tissue-specific role of Gal-1 as a master regulator of inflammatory responses across different pathophysiologic settings, highlighting its potential role as a therapeutic target. Further studies designed at analyzing the intrinsic and extrinsic pathways that control Gal-1 expression and function in different tissue microenvironments may contribute to delineate tailored therapeutic strategies aimed at positively or negatively modulating this glycan-binding protein in pathologic inflammatory conditions.


Assuntos
Galectina 1 , Galectinas , Carboidratos , Galectina 1/genética , Galectinas/metabolismo , Humanos , Inflamação/metabolismo , Polissacarídeos/metabolismo
5.
Cancer Lett ; 518: 72-81, 2021 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-34144098

RESUMO

Tn is a tumor-associated carbohydrate antigen that constitutes both a diagnostic tool and an immunotherapeutic target. It originates from interruption of the mucin O-glycosylation pathway through defects involving, at least in part, alterations in core-1 synthase activity, which is highly dependent on Cosmc, a folding chaperone. Tn antigen is recognized by the Macrophage Galactose-type Lectin (MGL), a C-type lectin receptor present on dendritic cells and macrophages. Specific interactions between Tn and MGL shape anti-tumoral immune responses by regulating several innate and adaptive immune cell programs. In this work, we generated and characterized a variant of the lung cancer murine cell line LL/2 that expresses Tn by mutation of the Cosmc chaperone gene (Tn+ LL/2). We confirmed Tn expression by lectin glycophenotyping and specific anti-Tn antibodies, verified abrogation of T-synthase activity in these cells, and confirmed its recognition by the murine MGL2 receptor. Interestingly, Tn+ LL/2 cells were more aggressive in vivo, resulting in larger and highly vascularized tumors than those generated from wild type Tn- LL/2 cells. In addition, Tn+ tumors exhibited an increase in CD11c+ F4/80+ cells with high expression of MGL2, together with an augmented expression of IL-10 in infiltrating CD4+ and CD8+ T cells. Importantly, this immunosuppressive microenvironment was dependent on the presence of MGL2+ cells, since depletion of these cells abrogated tumor growth, vascularization and recruitment of IL-10+ T cells. Altogether, our results suggest that expression of Tn in tumor cells and its interaction with MGL2-expressing CD11c+F4/80+ cells promote immunosuppression and angiogenesis, thus favoring tumor progression.


Assuntos
Antígenos Glicosídicos Associados a Tumores/imunologia , Galactose/imunologia , Lectinas Tipo C/imunologia , Neoplasias Pulmonares/imunologia , Macrófagos/imunologia , Neovascularização Patológica/imunologia , Animais , Antígeno CD11c/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Feminino , Terapia de Imunossupressão/métodos , Interleucina-10/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Microambiente Tumoral/imunologia
6.
Sci Adv ; 7(25)2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34144987

RESUMO

Diverse immunoregulatory circuits operate to preserve intestinal homeostasis and prevent inflammation. Galectin-1 (Gal1), a ß-galactoside-binding protein, promotes homeostasis by reprogramming innate and adaptive immunity. Here, we identify a glycosylation-dependent "on-off" circuit driven by Gal1 and its glycosylated ligands that controls intestinal immunopathology by targeting activated CD8+ T cells and shaping the cytokine profile. In patients with inflammatory bowel disease (IBD), augmented Gal1 was associated with dysregulated expression of core 2 ß6-N-acetylglucosaminyltransferase 1 (C2GNT1) and α(2,6)-sialyltransferase 1 (ST6GAL1), glycosyltransferases responsible for creating or masking Gal1 ligands. Mice lacking Gal1 exhibited exacerbated colitis and augmented mucosal CD8+ T cell activation in response to 2,4,6-trinitrobenzenesulfonic acid; this phenotype was partially ameliorated by treatment with recombinant Gal1. While C2gnt1-/- mice exhibited aggravated colitis, St6gal1-/- mice showed attenuated inflammation. These effects were associated with intrinsic T cell glycosylation. Thus, Gal1 and its glycosylated ligands act to preserve intestinal homeostasis by recalibrating T cell immunity.

7.
Trends Mol Med ; 24(4): 348-363, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29555188

RESUMO

Although progress has been made in understanding the mechanisms implicated in the pathogenesis of autoimmune inflammation, studies aimed at identifying the mediators of these pathways will be necessary to develop more selective therapies. Galectins, a family of glycan-binding proteins, play central roles in immune cell homeostasis. Whereas some members of this family trigger regulatory programs that promote resolution of inflammation, others contribute to perpetuate autoimmune processes. We discuss the roles of endogenous galectins and their specific glycosylated ligands in shaping autoimmune responses by fueling, extinguishing, or rewiring immune circuits. Understanding the relevance of galectin-glycan interactions in autoimmune inflammation could help to uncover novel pathways of tolerance breakdown, define molecular signatures for patient stratification and therapy responses, and open new avenues for immune intervention.


Assuntos
Doenças Autoimunes/metabolismo , Galectinas/metabolismo , Inflamação/metabolismo , Animais , Doenças Autoimunes/tratamento farmacológico , Autoimunidade/efeitos dos fármacos , Fatores Biológicos/farmacologia , Fatores Biológicos/uso terapêutico , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/metabolismo , Humanos , Inflamação/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA