Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Biol Evol ; 33(4): 870-84, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26659250

RESUMO

The grass family (Poaceae), the fourth largest family of flowering plants, encompasses the most economically important cereal, forage, and energy crops, and exhibits a unique gametophytic self-incompatibility (SI) mechanism that is controlled by at least two multiallelic and independent loci, S and Z. Despite intense research efforts over the last six decades, the genes underlying S and Z remain uncharacterized. Here, we report a fine-mapping approach to identify the male component of the S-locus in perennial ryegrass (Lolium perenne L.) and provide multiple evidence that a domain of unknown function 247 (DUF247) gene is involved in its determination. Using a total of 10,177 individuals from seven different mapping populations segregating for S, we narrowed the S-locus to a genomic region containing eight genes, the closest recombinant marker mapping at a distance of 0.016 cM. Of the eight genes cosegregating with the S-locus, a highly polymorphic gene encoding for a protein containing a DUF247 was fully predictive of known S-locus genotypes at the amino acid level in the seven mapping populations. Strikingly, this gene showed a frameshift mutation in self-compatible darnel (Lolium temulentum L.), whereas all of the self-incompatible species of the Festuca-Lolium complex were predicted to encode functional proteins. Our results represent a major step forward toward understanding the gametophytic SI system in one of the most important plant families and will enable the identification of additional components interacting with the S-locus.


Assuntos
Mapeamento Cromossômico , Proteínas de Plantas/genética , Plantas Daninhas/genética , Autoincompatibilidade em Angiospermas/genética , Ligação Genética , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas Quinases/genética
2.
Plant J ; 84(4): 816-26, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26408275

RESUMO

Here we report the draft genome sequence of perennial ryegrass (Lolium perenne), an economically important forage and turf grass species that is widely cultivated in temperate regions worldwide. It is classified along with wheat, barley, oats and Brachypodium distachyon in the Pooideae sub-family of the grass family (Poaceae). Transcriptome data was used to identify 28,455 gene models, and we utilized macro-co-linearity between perennial ryegrass and barley, and synteny within the grass family, to establish a synteny-based linear gene order. The gametophytic self-incompatibility mechanism enables the pistil of a plant to reject self-pollen and therefore promote out-crossing. We have used the sequence assembly to characterize transcriptional changes in the stigma during pollination with both compatible and incompatible pollen. Characterization of the pollen transcriptome identified homologs to pollen allergens from a range of species, many of which were expressed to very high levels in mature pollen grains, and are potentially involved in the self-incompatibility mechanism. The genome sequence provides a valuable resource for future breeding efforts based on genomic prediction, and will accelerate the development of new varieties for more productive grasslands.


Assuntos
Genoma de Planta/genética , Lolium/genética , Análise de Sequência de DNA/métodos , Sintenia , Ração Animal , Flores/genética , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Anotação de Sequência Molecular , Filogenia , Melhoramento Vegetal/métodos , Poaceae/classificação , Poaceae/genética , Pólen/genética , Polinização/genética , Autoincompatibilidade em Angiospermas/genética , Transcriptoma/genética
3.
Theor Appl Genet ; 129(1): 45-52, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26407618

RESUMO

KEYMESSAGE: By using the genotyping-by-sequencing method, it is feasible to characterize genomic relationships directly at the level of family pools and to estimate genomic heritabilities from phenotypes scored on family-pools in outbreeding species. Genotyping-by-sequencing (GBS) has recently become a promising approach for characterizing plant genetic diversity on a genome-wide scale. We use GBS to extend the concept of heritability beyond individuals by genotyping family-pool samples by GBS and computing genomic relationship matrices (GRMs) and genomic heritabilities directly at the level of family-pools from pool-frequencies obtained by sequencing. The concept is of interest for species where breeding and phenotyping is not done at the individual level but operates uniquely at the level of (multi-parent) families. As an example we demonstrate the approach using a set of 990 two-parent F2 families of perennial ryegrass (Lolium Perenne). The families were phenotyped as a family-unit in field plots for heading date and crown rust resistance. A total of 728 K single nucleotide polymorphism (SNP) variants were available and were divided in groups of different sequencing depths. GRMs based on GBS data showed diagonal values biased upwards at low sequencing depth, while off-diagonals were little affected by the sequencing depth. Using variants with high sequencing depth, genomic heritability for crown rust resistance was 0.33, and for heading date 0.22, and these genomic heritabilities were biased downwards when using variants with lower sequencing depth. Broad sense heritabilities were 0.61 and 0.66, respectively. Underestimation of genomic heritability at lower sequencing depth was confirmed with simulated data. We conclude that it is feasible to use GBS to describe relationships between family-pools and to estimate genomic heritability directly at the level of F2 family-pool samples, but estimates are biased at low sequencing depth.


Assuntos
Pool Gênico , Genoma de Planta , Genômica/métodos , Lolium/genética , Resistência à Doença/genética , Frequência do Gene , Biblioteca Gênica , Técnicas de Genotipagem/métodos , Modelos Genéticos , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Análise de Sequência de DNA/métodos
4.
BMC Genomics ; 16: 249, 2015 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-25886302

RESUMO

BACKGROUND: The Lolium-Festuca complex incorporates species from the Lolium genera and the broad leaf fescues, both belonging to the subfamily Pooideae. This subfamily also includes wheat, barley, oat and rye, making it extremely important to world agriculture. Species within the Lolium-Festuca complex show very diverse phenotypes, and many of them are related to agronomically important traits. Analysis of sequenced transcriptomes of these non-model species may shed light on the molecular mechanisms underlying this phenotypic diversity. RESULTS: We have generated de novo transcriptome assemblies for four species from the Lolium-Festuca complex, ranging from 52,166 to 72,133 transcripts per assembly. We have also predicted a set of proteins and validated it with a high-confidence protein database from three closely related species (H. vulgare, B. distachyon and O. sativa). We have obtained gene family clusters for the four species using OrthoMCL and analyzed their inferred phylogenetic relationships. Our results indicate that VRN2 is a candidate gene for differentiating vernalization and non-vernalization types in the Lolium-Festuca complex. Grouping of the gene families based on their BLAST identity enabled us to divide ortholog groups into those that are very conserved and those that are more evolutionarily relaxed. The ratio of the non-synonumous to synonymous substitutions enabled us to pinpoint protein sequences evolving in response to positive selection. These proteins may explain some of the differences between the more stress tolerant Festuca, and the less stress tolerant Lolium species. CONCLUSIONS: Our data presents a comprehensive transcriptome sequence comparison between species from the Lolium-Festuca complex, with the identification of potential candidate genes underlying some important phenotypical differences within the complex (such as VRN2). The orthologous genes between the species have a very high %id (91,61%) and the majority of gene families were shared for all of them. It is likely that the knowledge of the genomes will be largely transferable between species within the complex.


Assuntos
Festuca/genética , Lolium/genética , Homologia de Sequência , Transcriptoma , Biologia Computacional , Festuca/metabolismo , Lolium/metabolismo , Família Multigênica , Filogenia , Seleção Genética , Análise de Sequência de RNA , Estresse Fisiológico
5.
PLoS One ; 8(3): e57438, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23469194

RESUMO

Genotyping-by-Sequencing (GBS) is an excellent tool for characterising genetic variation between plant genomes. To date, its use has been reported only for genotyping of single individuals. However, there are many applications where resolving allele frequencies within populations on a genome-wide scale would be very powerful, examples include the breeding of outbreeding species, varietal protection in outbreeding species, monitoring changes in population allele frequencies. This motivated us to test the potential to use GBS to evaluate allele frequencies within populations. Perennial ryegrass is an outbreeding species, and breeding programs are based upon selection on populations. We tested two restriction enzymes for their efficiency in complexity reduction of the perennial ryegrass genome. The resulting profiles have been termed Genome Wide Allele Frequency Fingerprints (GWAFFs), and we have shown how these fingerprints can be used to distinguish between plant populations. Even at current costs and throughput, using sequencing to directly evaluate populations on a genome-wide scale is viable. GWAFFs should find many applications, from varietal development in outbreeding species right through to playing a role in protecting plant breeders' rights.


Assuntos
Impressões Digitais de DNA/métodos , Frequência do Gene , Genoma de Planta , Genótipo , Lolium/genética , Cruzamento , Mapeamento Cromossômico , Estudo de Associação Genômica Ampla , Técnicas de Genotipagem , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA