Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(4): 107126, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432629

RESUMO

The forkhead box family transcription factor FOXQ1 is highly induced in several types of carcinomas, where it promotes epithelial-to-mesenchymal transition and tumor metastasis. The molecular mechanisms that lead to FOXQ1 deregulation in cancer are incompletely understood. Here, we used CRISPR-Cas9-based genomic locus proteomics and promoter reporter constructs to discover transcriptional regulators of FOXQ1 and identified the tumor suppressor p53 as a negative regulator of FOXQ1 expression. Chromatin immunoprecipitation followed by quantitative PCR as well as complementary gain and loss-of-function assays in model cell lines indicated that p53 binds close to the transcription start site of the FOXQ1 promoter, and that it suppresses FOXQ1 expression in various cell types. Consistently, pharmacological activation of p53 using nutlin-3 or doxorubicin reduced FOXQ1 mRNA and protein levels in cancer cell lines harboring wildtype p53. Finally, we observed that p53 mutations are associated with increased FOXQ1 expression in human cancers. Altogether, these results suggest that loss of p53 function-a hallmark feature of many types of cancer-derepresses FOXQ1, which in turn promotes tumor progression.


Assuntos
Fatores de Transcrição Forkhead , Regulação Neoplásica da Expressão Gênica , Proteína Supressora de Tumor p53 , Humanos , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Linhagem Celular Tumoral , Regiões Promotoras Genéticas , Mutação
2.
Int J Mol Sci ; 21(10)2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32429099

RESUMO

Following the outbreak of novel severe acute respiratory syndrome (SARS)-coronavirus (CoV)2, the majority of nations are struggling with countermeasures to fight infection, prevent spread and improve patient survival. Considering that the pandemic is a recent event, no large clinical trials have been possible and since coronavirus specific drug are not yet available, there is no strong consensus on how to treat the coronavirus disease 2019 (COVID-19) associated viral pneumonia. Coronaviruses code for an important multifunctional enzyme named papain-like protease (PLP), that has many roles in pathogenesis. First, PLP is one of the two viral cysteine proteases, along with 3-chymotripsin-like protease, that is responsible for the production of the replicase proteins required for viral replication. Second, its intrinsic deubiquitinating and deISGylating activities serve to antagonize the host's immune response that would otherwise hinder infection. Both deubiquitinating and deISGylating functions involve the removal of the small regulatory polypeptides, ubiquitin and ISG15, respectively, from target proteins. Ubiquitin modifications can regulate the innate immune response by affecting regulatory proteins, either by altering their stability via the ubiquitin proteasome pathway or by directly regulating their activity. ISG15 is a ubiquitin-like modifier with pleiotropic effects, typically expressed during the host cell immune response. PLP inhibitors have been evaluated during past coronavirus epidemics, and have showed promising results as an antiviral therapy in vitro. In this review, we recapitulate the roles of PLPs in coronavirus infections, report a list of PLP inhibitors and suggest possible therapeutic strategies for COVID-19 treatment, using both clinical and preclinical drugs.


Assuntos
Betacoronavirus/enzimologia , Enzimas Desubiquitinantes/antagonistas & inibidores , Animais , COVID-19 , Coronavirus/enzimologia , Proteases 3C de Coronavírus , Infecções por Coronavirus/tratamento farmacológico , Cisteína Endopeptidases , Humanos , Pandemias , Pneumonia Viral/tratamento farmacológico , SARS-CoV-2 , Proteínas não Estruturais Virais/antagonistas & inibidores
3.
Int J Mol Sci ; 21(13)2020 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-32635430

RESUMO

The proteasome is a validated target of cancer therapeutics. Inhibition of proteasome activity results in the activation of the unfolded protein response (UPR) characterized by phosphorylation of eukaryotic initiation factor 2α (eIF2α), global translational arrest, and increased expression of the proapoptotic CHOP (C/EBP homologous protein) protein. Defects in the UPR response has been reported to result in altered sensitivity of tumor cells to proteasome inhibitors. Here, we characterized the effects of the deubiquitinase (DUB) inhibitor VLX1570 on protein homeostasis, both at the level of the UPR and on protein translation, in acute lymphoblastic leukemia (ALL). Similar to the 20S inhibitor bortezomib, VLX1570 induced accumulation of polyubiquitinated proteins and increased expression of the chaperone Grp78/Bip in ALL cells. Both compounds induced cleavage of PARP (Poly (ADP-ribose) polymerase) in ALL cells, consistent with induction of apoptosis. However, and in contrast to bortezomib, VLX1570 treatment resulted in limited induction of the proapoptotic CHOP protein. Translational inhibition was observed by both bortezomib and VLX1570. We report that in distinction to bortezomib, suppression of translation by VXL1570 occurred at the level of elongation. Increased levels of Hsc70/Hsp70 proteins were observed on polysomes following exposure to VLX1570, possibly suggesting defects in nascent protein folding. Our findings demonstrate apoptosis induction in ALL cells that appears to be uncoupled from CHOP induction, and show that VLX1570 suppresses protein translation by a mechanism distinct from that of bortezomib.


Assuntos
Azepinas/farmacologia , Compostos de Benzilideno/farmacologia , Enzimas Desubiquitinantes/antagonistas & inibidores , Enzimas Desubiquitinantes/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Animais , Apoptose/efeitos dos fármacos , Bortezomib/farmacologia , Linhagem Celular Tumoral , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico/metabolismo , Humanos , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Dobramento de Proteína/efeitos dos fármacos , Fator de Transcrição CHOP/metabolismo , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Peixe-Zebra
4.
Cancer Metastasis Rev ; 36(4): 635-653, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29134486

RESUMO

Maintenance of protein homeostasis is a crucial process for the normal functioning of the cell. The regulated degradation of proteins is primarily facilitated by the ubiquitin proteasome system (UPS), a system of selective tagging of proteins with ubiquitin followed by proteasome-mediated proteolysis. The UPS is highly dynamic consisting of both ubiquitination and deubiquitination steps that modulate protein stabilization and degradation. Deregulation of protein stability is a common feature in the development and progression of numerous cancer types. Simultaneously, the elevated protein synthesis rate of cancer cells and consequential accumulation of misfolded proteins drives UPS addiction, thus sensitizing them to UPS inhibitors. This sensitivity along with the potential of stabilizing pro-apoptotic signaling pathways makes the proteasome an attractive clinical target for the development of novel therapies. Targeting of the catalytic 20S subunit of the proteasome is already a clinically validated strategy in multiple myeloma and other cancers. Spurred on by this success, promising novel inhibitors of the UPS have entered development, targeting the 20S as well as regulatory 19S subunit and inhibitors of deubiquitinating and ubiquitin ligase enzymes. In this review, we outline the manner in which deregulation of the UPS can cause cancer to develop, current clinical application of proteasome inhibitors, and the (pre-)clinical development of novel inhibitors of the UPS.


Assuntos
Enzimas Desubiquitinantes/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Animais , Enzimas Desubiquitinantes/antagonistas & inibidores , Humanos , Inibidores de Proteassoma/administração & dosagem
5.
Cancer Cell Int ; 18: 147, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30263014

RESUMO

BACKGROUND: Drug screening for the identification of compounds with anticancer activity is commonly performed using cell lines cultured under normal oxygen pressure and physiological pH. However, solid tumors are characterized by a microenvironment with limited access to nutrients, reduced oxygen supply and acidosis. Tumor hypoxia and acidosis have been identified as important drivers of malignant progression and contribute to multicellular resistance to different forms of therapy. Tumor acidosis represents an important mechanism mediating drug resistance thus the identification of drugs active on acid-adapted cells may improve the efficacy of cancer therapy. METHODS: Here, we characterized human colon carcinoma cells (HCT116) chronically adapted to grow at pH 6.8 and used them to screen the Prestwick drug library for cytotoxic compounds. Analysis of gene expression profiles in parental and low pH-adapted cells showed several differences relating to cell cycle, metabolism and autophagy. RESULTS: The screen led to the identification of several compounds which were further selected for their preferential cytotoxicity towards acid-adapted cells. Amongst 11 confirmed hits, we primarily focused our investigation on the benzoporphyrin derivative Verteporfin (VP). VP significantly reduced viability in low pH-adapted HCT116 cells as compared to parental HCT116 cells and normal immortalized epithelial cells. The cytotoxic activity of VP was enhanced by light activation and acidic pH culture conditions, likely via increased acid-dependent drug uptake. VP displayed the unique property to cause light-dependent cross-linking of proteins and resulted in accumulation of polyubiquitinated proteins without inducing inhibition of the proteasome. CONCLUSIONS: Our study provides an example and a tool to identify anticancer drugs targeting acid-adapted cancer cells.

6.
Blood ; 123(5): 706-16, 2014 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-24319254

RESUMO

Proteasome inhibitors have demonstrated that targeting protein degradation is effective therapy in multiple myeloma (MM). Here we show that deubiquitylating enzymes (DUBs) USP14 and UCHL5 are more highly expressed in MM cells than in normal plasma cells. USP14 and UCHL5 short interfering RNA knockdown decreases MM cell viability. A novel 19S regulatory particle inhibitor b-AP15 selectively blocks deubiquitylating activity of USP14 and UCHL5 without inhibiting proteasome activity. b-AP15 decreases viability in MM cell lines and patient MM cells, inhibits proliferation of MM cells even in the presence of bone marrow stroma cells, and overcomes bortezomib resistance. Anti-MM activity of b-AP15 is associated with growth arrest via downregulation of CDC25C, CDC2, and cyclin B1 as well as induction of caspase-dependent apoptosis and activation of unfolded protein response. In vivo studies using distinct human MM xenograft models show that b-AP15 is well tolerated, inhibits tumor growth, and prolongs survival. Combining b-AP15 with suberoylanilide hydroxamic acid, lenalidomide, or dexamethasone induces synergistic anti-MM activity. Our preclinical data showing efficacy of b-AP15 in MM disease models validates targeting DUBs in the ubiquitin proteasomal cascade to overcome proteasome inhibitor resistance and provides the framework for clinical evaluation of USP14/UCHL5 inhibitors to improve patient outcome in MM.


Assuntos
Antineoplásicos/farmacologia , Ácidos Borônicos/farmacologia , Mieloma Múltiplo/tratamento farmacológico , Piperidonas/farmacologia , Inibidores de Proteases/farmacologia , Pirazinas/farmacologia , Ubiquitina Tiolesterase/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Bortezomib , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Ubiquitina Tiolesterase/genética , Regulação para Cima
7.
Drug Resist Updat ; 21-22: 20-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26183292

RESUMO

Although more traditionally associated with degradation and maintenance of protein homeostasis, the ubiquitin-proteasome system (UPS) has emerged as a critical component in the regulation of cancer cell growth and survival. The development of inhibitors that block the proteolytic activities of the proteasome have highlighted its suitability as a bona fide anti-cancer drug target. However, key determinants including the development of drug resistance and dose-limiting toxicity call for the identification of alternative components of the UPS for novel drug targeting. Recently the deubiquitinases (DUBs), a diverse family of enzymes that catalyze ubiquitin removal, have attracted significant interest as targets for the development of next generation UPS inhibitors. In particular, pharmacological inhibition of the proteasomal cysteine DUBs (i.e., USP14 and UCHL5) has been shown to be particularly cytotoxic to cancer cells and inhibit tumour growth in several in vivo models. In the current review we focus on the modes of action of proteasome DUB inhibitors and discus the potential of DUB inhibitors to circumvent acquired drug resistance and provide a therapeutic option for the treatment of cancer.


Assuntos
Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Inibidores de Proteassoma/farmacologia , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/efeitos adversos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias/enzimologia , Inibidores de Proteassoma/administração & dosagem , Inibidores de Proteassoma/efeitos adversos , Proteases Específicas de Ubiquitina/antagonistas & inibidores
8.
Int J Mol Sci ; 16(11): 27313-26, 2015 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-26580606

RESUMO

The disorganized nature of tumor vasculature results in the generation of microenvironments characterized by nutrient starvation, hypoxia and accumulation of acidic metabolites. Tumor cell populations in such areas are often slowly proliferating and thus refractory to chemotherapeutical drugs that are dependent on an active cell cycle. There is an urgent need for alternative therapeutic interventions that circumvent growth dependency. The screening of drug libraries using multicellular tumor spheroids (MCTS) or glucose-starved tumor cells has led to the identification of several compounds with promising therapeutic potential and that display activity on quiescent tumor cells. Interestingly, a common theme of these drug screens is the recurrent identification of agents that affect mitochondrial function. Such data suggest that, contrary to the classical Warburg view, tumor cells in nutritionally-compromised microenvironments are dependent on mitochondrial function for energy metabolism and survival. These findings suggest that mitochondria may represent an "Achilles heel" for the survival of slowly-proliferating tumor cells and suggest strategies for the development of therapy to target these cell populations.


Assuntos
Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Fase de Repouso do Ciclo Celular/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos , Descoberta de Drogas , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Metabolismo Energético/efeitos dos fármacos , Glucose/metabolismo , Humanos , Hipóxia , Terapia de Alvo Molecular , Neoplasias/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Células Tumorais Cultivadas , Microambiente Tumoral/efeitos dos fármacos
9.
Mol Pharmacol ; 85(6): 932-45, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24714215

RESUMO

b-AP15 [(3E,5E)-3,5-bis[(4-nitrophenyl)methylidene]-1-(prop-2-enoyl)piperidin-4-one] is a small molecule inhibitor of the ubiquitin specific peptidase (USP) 14/ubiquitin carboxyl-terminal hydrolase (UCH) L5 deubiquitinases of the 19S proteasome that shows antitumor activity in a number of tumor models, including multiple myeloma. b-AP15 contains an α,ß-unsaturated carbonyl unit that is likely to react with intracellular nucleophiles such as cysteine thiolates by Michael addition. We found that binding of b-AP15 to USP14 is partially reversible, and that inhibition of proteasome function is reversible in cells. Despite reversible binding, tumor cells are rapidly committed to apoptosis/cell death after exposure to b-AP15. We show that b-AP15 is rapidly taken up from the medium and enriched in cells. Enrichment provides an explanation of the stronger potency of the compound in cellular assays compared with in vitro biochemical assays. Cellular uptake was impaired by 30-minute pretreatment of cells with low concentrations of N-ethylmaleimide (10 µM), suggesting that enrichment was thiol dependent. We report that in addition to inhibition of deubiquitinases, b-AP15 inhibits the selenoprotein thioredoxin reductase (TrxR). Whereas proteasome inhibition was closely associated with cell death induction, inhibition of TrxR was not. TrxR inhibition is, however, likely to contribute to triggering of oxidative stress observed with b-AP15. Furthermore, we present structure-activity, in vivo pharmacokinetic, and hepatocyte metabolism data for b-AP15. We conclude that the strong enrichment of b-AP15 in cells and a rapid commitment to apoptosis/cell death are factors that likely contribute to the strong antitumor activity of this compound.


Assuntos
Apoptose/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Piperidonas/farmacologia , Proteases Específicas de Ubiquitina/antagonistas & inibidores , Linhagem Celular Tumoral , Humanos , Estresse Oxidativo/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos
10.
Eur J Immunol ; 43(1): 249-57, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22996291

RESUMO

Natural killer (NK) cells are innate lymphocytes that are able to directly kill tumor cells through different mechanisms including ligation of TNF-related apoptosis-inducing ligand (TRAIL) receptors. Zoledronic acid (ZA) is a bisphosphonate known to upregulate the expression of TRAIL on human γδ T cells. Here, we investigated whether exposure to ZA would upregulate TRAIL expression on human NK cells and augment their cytotoxicity against tumor cells. When cocultured with monocytes, treatment with ZA and IL-2 resulted in a significant upregulation of TRAIL expression on human NK cells (p = 0.002). Consequently, ZA-primed NK cells were significantly more cytotoxic against TRAIL sensitive tumor cells (p < 0.0001). In the presence of ZA and IL-2, monocytes produced high levels of IFN-γ; when cultured in the presence of neutralizing antibodies to IFN-γ, TRAIL expression and TRAIL-mediated cytotoxicity of NK cells were significantly reduced. Furthermore, in tumor-bearing SCID/Beige mice, a significant delayed tumor progression and prolonged survival was observed after infusion of ZA-primed NK cells compared with that observed in mice infused with unprimed NK cells. These findings represent a novel approach to potentiate TRAIL-mediated apoptosis by adoptively infused NK cells that could improve the outcome in patients with cancer.


Assuntos
Citotoxicidade Imunológica , Interferon gama/metabolismo , Células Matadoras Naturais/imunologia , Monócitos/imunologia , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Animais , Células Cultivadas , Técnicas de Cocultura , Difosfonatos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Humanos , Imidazóis/farmacologia , Interleucina-2/farmacologia , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/transplante , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Camundongos SCID , Neoplasias/imunologia , Ligante Indutor de Apoptose Relacionado a TNF/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Ácido Zoledrônico
11.
Int J Mol Sci ; 15(10): 18557-73, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-25318057

RESUMO

The tumor necrosis factor (TNF)-related apoptosis-inducing ligand- receptor (TRAIL-R) family has emerged as a key mediator of cell fate and survival. Ligation of TRAIL ligand to TRAIL-R1 or TRAIL-R2 initiates the extrinsic apoptotic pathway characterized by the recruitment of death domains, assembly of the death-inducing signaling complex (DISC), caspase activation and ultimately apoptosis. Conversely the decoy receptors TRAIL-R3 and TRAIL-R4, which lack the pro-apoptotic death domain, function to dampen the apoptotic response by competing for TRAIL ligand. The tissue restricted expression of the decoy receptors on normal but not cancer cells provides a therapeutic rational for the development of selective TRAIL-mediated anti-tumor therapies. Recent clinical trials using agonistic antibodies against the apoptosis-inducing TRAIL receptors or recombinant TRAIL have been promising; however the number of patients in complete remission remains stubbornly low. The mechanisms of TRAIL resistance are relatively unexplored but may in part be due to TRAIL-R down-regulation or shedding of TRAIL-R by tumor cells. Therefore a better understanding of the mechanisms underlying TRAIL resistance is required. The ubiquitin-proteasome system (UPS) has been shown to regulate TRAIL-R members suggesting that pharmacological inhibition of the UPS may be a novel strategy to augment TRAIL-based therapies and increase efficacies. We recently identified b-AP15 as an inhibitor of proteasome deubiquitinase (DUB) activity. Interestingly, exposure of tumor cell lines to b-AP15 resulted in increased TRAIL-R2 expression and enhanced sensitivity to TRAIL-mediated apoptosis and cell death in vitro and in vivo. In conclusion, targeting the UPS may represent a novel strategy to increase the cell surface expression of pro-apoptotic TRAIL-R on cancer cells and should be considered in clinical trials targeting TRAIL-receptors in cancer patients.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Ubiquitina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
12.
Sci Rep ; 14(1): 13037, 2024 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844605

RESUMO

The proteasome-associated deubiquitinase USP14 is a potential drug target. Using an inducible USP14 knockout system in colon cancer cells, we found that USP14 depletion impedes cellular proliferation, induces cell cycle arrest, and leads to a senescence-like phenotype. Transcriptomic analysis revealed altered gene expression related to cell division and cellular differentiation. USP14 knockout cells also exhibited changes in morphology, actin distribution, and expression of actin cytoskeletal components. Increased ubiquitin turnover was observed, offset by upregulation of polyubiquitin genes UBB and UBC. Pharmacological inhibition of USP14 with IU1 increased ubiquitin turnover but did not affect cellular growth or morphology. BioGRID data identified USP14 interactors linked to actin cytoskeleton remodeling, DNA damage repair, mRNA splicing, and translation. In conclusion, USP14 loss in colon cancer cells induces a transient quiescent cancer phenotype not replicated by pharmacologic inhibition of its deubiquitinating activity.


Assuntos
Proliferação de Células , Senescência Celular , Neoplasias Colorretais , Ubiquitina Tiolesterase , Humanos , Senescência Celular/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética , Linhagem Celular Tumoral , Fenótipo , Complexo de Endopeptidases do Proteassoma/metabolismo , Pontos de Checagem do Ciclo Celular/genética , Regulação Neoplásica da Expressão Gênica , Ubiquitina/metabolismo
13.
Protein Sci ; 33(5): e4975, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38588275

RESUMO

The deubiquitinase (DUB) ubiquitin-specific protease 14 (USP14) is a dual domain protein that plays a regulatory role in proteasomal degradation and has been identified as a promising therapeutic target. USP14 comprises a conserved USP domain and a ubiquitin-like (Ubl) domain separated by a 25-residue linker. The enzyme activity of USP14 is autoinhibited in solution, but is enhanced when bound to the proteasome, where the Ubl and USP domains of USP14 bind to the Rpn1 and Rpt1/Rpt2 units, respectively. No structure of full-length USP14 in the absence of proteasome has yet been presented, however, earlier work has described how transient interactions between Ubl and USP domains in USP4 and USP7 regulate DUB activity. To better understand the roles of the Ubl and USP domains in USP14, we studied the Ubl domain alone and in full-length USP14 by nuclear magnetic resonance spectroscopy and used small angle x-ray scattering and molecular modeling to visualize the entire USP14 protein ensemble. Jointly, our results show how transient interdomain interactions between the Ubl and USP domains of USP14 predispose its conformational ensemble for proteasome binding, which may have functional implications for proteasome regulation and may be exploited in the design of future USP14 inhibitors.


Assuntos
Complexo de Endopeptidases do Proteassoma , Ubiquitina , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Ubiquitina/química , Conformação Molecular , Modelos Moleculares
14.
Int J Cancer ; 133(7): 1643-52, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23504627

RESUMO

Doxorubicin (DOX) is an anthracycline antibiotic that is widely used to treat different types of malignancy. In this study, it was studied whether DOX could be used to render tumor cells susceptible to apoptosis by NK and T cells. Pretreatment with subapoptotic doses of DOX sensitized tumor cell lines of various histotypes to both NK and T cells resulting in a 3.7 to 32.7% increase in lysis (2.5 mean fold increase, p < 0.0001) and a 2.9 to 14.2% increase in lysis (3.0 mean-fold increase, p < 0.05), respectively. The sensitizing effect of the drug was primarily dependent on the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)/TRAIL-receptor signaling, but not on Fas-ligand, perforin, NKG2D or DNAM-1. The central role of the TRAIL signaling pathway was further supported by an increased expression of TRAIL-R2 on DOX-treated tumor cells and by downregulation of cellular FLICE inhibitory protein, the inhibitors of death receptor-mediated apoptosis. Compared to untreated cells, pretreatment of tumor cells with DOX showed increased processing and activation of caspase-8 on coculture with NK or T cells. The significance of this treatment strategy was confirmed using a xenogeneic tumor-bearing mouse model. Tumor progression was delayed in mice that received either NK cells (p < 0.05) or T cells (p < 0.0001) following DOX treatment compared to mice receiving either cell type alone. Moreover, combined infusion of both NK and T cells following DOX treatment not only delayed tumor progression but also significantly improved the long-term survival (p < 0.01). Based on these findings, it was proposed that DOX can be used to improve the efficacy of adoptive cell therapy in patients with cancer.


Assuntos
Doxorrubicina/farmacologia , Células Matadoras Naturais/imunologia , Melanoma/tratamento farmacológico , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Linfócitos T/imunologia , Animais , Antibióticos Antineoplásicos/farmacologia , Antígenos de Diferenciação de Linfócitos T/metabolismo , Apoptose/efeitos dos fármacos , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/biossíntese , Caspase 8/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo , Ativação Enzimática , Proteína Ligante Fas/metabolismo , Humanos , Imunoterapia Adotiva , Melanoma/imunologia , Camundongos , Camundongos SCID , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Perforina/metabolismo , Interferência de RNA , RNA Interferente Pequeno , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/imunologia , Transdução de Sinais , Transplante Heterólogo , Regulação para Cima
15.
Biochem Biophys Res Commun ; 431(2): 117-23, 2013 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-23318177

RESUMO

Piperlongumine, a natural product from the plant Piperlongum, has demonstrated selective cytotoxicity to tumor cells and to show anti-tumor activity in animal models [1]. Cytotoxicity of piperlongumine has been attributed to increase in reactive oxygen species (ROS) in cancer cells. We here report that piperlongumine is an inhibitor of the ubiquitin-proteasome system (UPS). Exposure of tumor cells to piperlongumine resulted in accumulation of a reporter substrate known to be rapidly degraded by the proteasome, and of accumulation of ubiquitin conjugated proteins. However, no inhibition of 20S proteolytic activity or 19S deubiquitinating activity was observed at concentrations inducing cytotoxicity. Consistent with previous reports, piperlongumine induced strong ROS activation which correlated closely with UPS inhibition and cytotoxicity. Proteasomal blocking could not be mimicked by agents that induce oxidative stress. Our results suggest that the anti-cancer activity of piperlongumine involves inhibition of the UPS at a pre-proteasomal step, prior to deubiquitination of malfolded protein substrates at the proteasome, and that the previously reported induction of ROS is a consequence of this inhibition.


Assuntos
Dioxolanos/farmacologia , Neoplasias/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Ubiquitina/antagonistas & inibidores , Linhagem Celular Tumoral , Humanos , Neoplasias/genética , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Transcriptoma/efeitos dos fármacos
16.
Cancer Immunol Immunother ; 62(8): 1359-68, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23689729

RESUMO

The proteasome inhibitor bortezomib simultaneously renders tumor cells sensitive to killing by natural killer (NK) cells and resistant to killing by tumor-specific T cells. Here, we show that b-AP15, a novel inhibitor of proteasome deubiquitinating activity, sensitizes tumors to both NK and T cell-mediated killing. Exposure to b-AP15 significantly increased the susceptibility of tumor cell lines of various origins to NK (p < 0.0002) and T cell (p = 0.02)-mediated cytotoxicity. Treatment with b-AP15 resulted in increased tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor-2 expression (p = 0.03) and decreased cFLIP expression in tumor cells in vitro. In tumor-bearing SCID/Beige mice, treatment with b-AP15 followed by infusion of either human NK cells or tumor-specific T cells resulted in a significantly delayed tumor progression compared with mice treated with NK cells (p = 0.006), T cells (p < 0.0001) or b-AP15 alone (p = 0.003). Combined infusion of NK and T cells in tumor-bearing BALB/c mice following treatment with b-AP15 resulted in a significantly prolonged long-term survival compared with mice treated with b-AP15 and NK or T cells (p ≤ 0.01). Our findings show that b-AP15-induced sensitization to TRAIL-mediated apoptosis could be used as a novel strategy to augment the anticancer effects of adoptively infused NK and T cells in patients with cancer.


Assuntos
Apoptose/imunologia , Células Matadoras Naturais/imunologia , Neoplasias/imunologia , Piperidonas/imunologia , Inibidores de Proteases/imunologia , Complexo de Endopeptidases do Proteassoma/imunologia , Linfócitos T/imunologia , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Linhagem Celular Tumoral , Células Cultivadas , Terapia Combinada , Citocinas/imunologia , Citocinas/metabolismo , Citotoxicidade Imunológica/efeitos dos fármacos , Citotoxicidade Imunológica/imunologia , Células HCT116 , Células HeLa , Humanos , Imunoterapia Adotiva , Células K562 , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/transplante , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Neoplasias/patologia , Neoplasias/terapia , Piperidonas/farmacologia , Inibidores de Proteases/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Linfócitos T/metabolismo , Linfócitos T/transplante , Ligante Indutor de Apoptose Relacionado a TNF/imunologia , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Ubiquitinação/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Invest New Drugs ; 31(3): 587-98, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23179339

RESUMO

Gambogic acid (GA), displays cytotoxicity towards a wide variety of tumor cells and has been shown to affect many important cell-signaling pathways. In the present work, we investigated the mechanism of action of GA by analysis of drug-induced changes in gene expression profiles and identified GA and the derivative dihydro GA as possible inhibitors of the ubiquitin-proteasome system (UPS). Both GA and dihydro GA inhibited proteasome function in cells resulting in the accumulation of polyubiquitin complexes. In vitro experiments showed that both GA and dihydro GA inhibited 20S chymotrypsin activity and the inhibitory effects of GA and dihydro GA on proteasome function corresponded with apoptosis induction and cell death. In conclusion, our results show that GA and dihydro GA exert their cytotoxic activity through inhibition of the UPS, specifically by acting as inhibitors of the chymotrypsin activity of the 20S proteasome.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Proteassoma/farmacologia , Xantonas/farmacologia , Apoptose/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Humanos , Células MCF-7 , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo
18.
ACS Appl Mater Interfaces ; 15(14): 17485-17494, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36976817

RESUMO

Despite the enormous advancements in nanomedicine research, a limited number of nanoformulations are available on the market, and few have been translated to clinics. An easily scalable, sustainable, and cost-effective manufacturing strategy and long-term stability for storage are crucial for successful translation. Here, we report a system and method to instantly formulate NF achieved with a nanoscale polyelectrolyte coacervate-like system, consisting of anionic pseudopeptide poly(l-lysine isophthalamide) derivatives, polyethylenimine, and doxorubicin (Dox) via simple "mix-and-go" addition of precursor solutions in seconds. The coacervate-like nanosystem shows enhanced intracellular delivery of Dox to patient-derived multidrug-resistant (MDR) cells in 3D tumor spheroids. The results demonstrate the feasibility of an instant drug formulation using a coacervate-like nanosystem. We envisage that this technique can be widely utilized in the nanomedicine field to bypass the special requirement of large-scale production and elongated shelf life of nanomaterials.


Assuntos
Nanopartículas , Nanoestruturas , Neoplasias , Humanos , Estudos de Viabilidade , Doxorrubicina/farmacologia , Doxorrubicina/química , Neoplasias/patologia , Portadores de Fármacos/química , Nanopartículas/química , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos
19.
RSC Adv ; 12(48): 31102-31123, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36349009

RESUMO

The broad spectrum of curcumin's beneficial properties has encouraged medicinal researchers to investigate its therapeutic efficacy against diverse diseases. The clinical potential of curcumin is, however limited due to its poor pharmacodynamic/pharmacokinetic properties (such as low solubility, pH instability, poor absorption in circulation, rapid elimination from the body and photochemical degradation). 3,5-Bis(ylidene)-4-piperidone scaffolds are considered a curcumin mimic that exhibit diverse bio-properties. The current review provides a brief overview of these mimics and highlights biological activities relevant to drug development.

20.
Front Oncol ; 12: 852980, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35530310

RESUMO

Dienone compounds have been demonstrated to display tumor-selective anti-cancer activity independently of the mutational status of TP53. Previous studies have shown that cell death elicited by this class of compounds is associated with inhibition of the ubiquitin-proteasome system (UPS). Here we extend previous findings by showing that the dienone compound b-AP15 inhibits proteasomal degradation of long-lived proteins. We show that exposure to b-AP15 results in increased association of the chaperones VCP/p97/Cdc48 and BAG6 with proteasomes. Comparisons between the gene expression profile generated by b-AP15 to those elicited by siRNA showed that knock-down of the proteasome-associated deubiquitinase (DUB) USP14 is the closest related to drug response. USP14 is a validated target for b-AP15 and we show that b-AP15 binds covalently to two cysteines, Cys203 and Cys257, in the ubiquitin-binding pocket of the enzyme. Consistent with this, deletion of USP14 resulted in decreased sensitivity to b-AP15. Targeting of USP14 was, however, found to not fully account for the observed proteasome inhibition. In search for additional targets, we utilized genome-wide CRISPR/Cas9 library screening and Proteome Integral Solubility Alteration (PISA) to identify mechanistically essential genes and b-AP15 interacting proteins respectively. Deletion of genes encoding mitochondrial proteins decreased the sensitivity to b-AP15, suggesting that mitochondrial dysfunction is coupled to cell death induced by b-AP15. Enzymes known to be involved in Phase II detoxification such as aldo-ketoreductases and glutathione-S-transferases were identified as b-AP15-targets using PISA. The finding that different exploratory approaches yielded different results may be explained in terms of a "target" not necessarily connected to the "mechanism of action" thus highlighting the importance of a holistic approach in the identification of drug targets. We conclude that b-AP15, and likely also other dienone compounds of the same class, affect protein degradation and proteasome function at more than one level.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA