Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 515(7526): 274-8, 2014 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-25307057

RESUMO

Alzheimer's disease is the most common form of dementia, characterized by two pathological hallmarks: amyloid-ß plaques and neurofibrillary tangles. The amyloid hypothesis of Alzheimer's disease posits that the excessive accumulation of amyloid-ß peptide leads to neurofibrillary tangles composed of aggregated hyperphosphorylated tau. However, to date, no single disease model has serially linked these two pathological events using human neuronal cells. Mouse models with familial Alzheimer's disease (FAD) mutations exhibit amyloid-ß-induced synaptic and memory deficits but they do not fully recapitulate other key pathological events of Alzheimer's disease, including distinct neurofibrillary tangle pathology. Human neurons derived from Alzheimer's disease patients have shown elevated levels of toxic amyloid-ß species and phosphorylated tau but did not demonstrate amyloid-ß plaques or neurofibrillary tangles. Here we report that FAD mutations in ß-amyloid precursor protein and presenilin 1 are able to induce robust extracellular deposition of amyloid-ß, including amyloid-ß plaques, in a human neural stem-cell-derived three-dimensional (3D) culture system. More importantly, the 3D-differentiated neuronal cells expressing FAD mutations exhibited high levels of detergent-resistant, silver-positive aggregates of phosphorylated tau in the soma and neurites, as well as filamentous tau, as detected by immunoelectron microscopy. Inhibition of amyloid-ß generation with ß- or γ-secretase inhibitors not only decreased amyloid-ß pathology, but also attenuated tauopathy. We also found that glycogen synthase kinase 3 (GSK3) regulated amyloid-ß-mediated tau phosphorylation. We have successfully recapitulated amyloid-ß and tau pathology in a single 3D human neural cell culture system. Our unique strategy for recapitulating Alzheimer's disease pathology in a 3D neural cell culture model should also serve to facilitate the development of more precise human neural cell models of other neurodegenerative disorders.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Técnicas de Cultura de Células/métodos , Modelos Biológicos , Células-Tronco Neurais/metabolismo , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Diferenciação Celular , Avaliação Pré-Clínica de Medicamentos/métodos , Espaço Extracelular/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Células-Tronco Neurais/patologia , Neuritos/metabolismo , Fosforilação , Presenilina-1/metabolismo , Agregação Patológica de Proteínas , Reprodutibilidade dos Testes , Proteínas tau/química , Proteínas tau/metabolismo
2.
J Neurosci ; 38(14): 3480-3494, 2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29507146

RESUMO

The ß-secretase ß-site APP-cleaving enzyme 1 (BACE1) is deemed a major culprit in Alzheimer's disease, but accumulating evidence indicates that there is more to the enzyme than driving the amyloidogenic processing of the amyloid precursor protein. For example, BACE1 has emerged as an important regulator of neuronal activity through proteolytic and, most unexpectedly, also through nonproteolytic interactions with several ion channels. Here, we identify and characterize the voltage-gated K+ channel 3.4 (Kv3.4) as a new and functionally relevant interaction partner of BACE1. Kv3.4 gives rise to A-type current with fast activating and inactivating kinetics and serves to repolarize the presynaptic action potential. We found that BACE1 and Kv3.4 are highly enriched and remarkably colocalized in hippocampal mossy fibers (MFs). In BACE1-/- mice of either sex, Kv3.4 surface expression was significantly reduced in the hippocampus and, in synaptic fractions thereof, Kv3.4 was specifically diminished, whereas protein levels of other presynaptic K+ channels such as KCa1.1 and KCa2.3 remained unchanged. The apparent loss of presynaptic Kv3.4 affected the strength of excitatory transmission at the MF-CA3 synapse in hippocampal slices of BACE1-/- mice when probed with the Kv3 channel blocker BDS-I. The effect of BACE1 on Kv3.4 expression and function should be bidirectional, as predicted from a heterologous expression system, in which BACE1 cotransfection produced a concomitant upregulation of Kv3.4 surface level and current based on a physical interaction between the two proteins. Our data show that, by targeting Kv3.4 to presynaptic sites, BACE1 endows the terminal with a powerful means to regulate the strength of transmitter release.SIGNIFICANCE STATEMENT The ß-secretase ß-site APP-cleaving enzyme 1 (BACE1) is infamous for its crucial role in the pathogenesis of Alzheimer's disease, but its physiological functions in the intact nervous system are only gradually being unveiled. Here, we extend previous work implicating BACE1 in the expression and function of voltage-gated Na+ and K+ channels. Specifically, we characterize voltage-gated K+ channel 3.4 (Kv3.4), a presynaptic K+ channel required for action potential repolarization, as a novel interaction partner of BACE1 at the mossy fiber (MF)-CA3 synapse of the hippocampus. BACE1 promotes surface expression of Kv3.4 at MF terminals, most likely by physically associating with the channel protein in a nonenzymatic fashion. We advance the BACE1-Kv3.4 interaction as a mechanism to strengthen the temporal control over transmitter release from MF terminals.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Fibras Musgosas Hipocampais/metabolismo , Canais de Potássio Shaw/metabolismo , Animais , Células Cultivadas , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transporte Proteico
3.
Bioessays ; 37(10): 1139-48, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26252541

RESUMO

Alzheimer's disease (AD) is the most common cause of dementia, and there is currently no cure. The "ß-amyloid cascade hypothesis" of AD is the basis of current understanding of AD pathogenesis and drug discovery. However, no AD models have fully validated this hypothesis. We recently developed a human stem cell culture model of AD by cultivating genetically modified human neural stem cells in a three-dimensional (3D) cell culture system. These cells were able to recapitulate key events of AD pathology including ß-amyloid plaques and neurofibrillary tangles. In this review, we will discuss the progress and current limitations of AD mouse models and human stem cell models as well as explore the breakthroughs of 3D cell culture systems. We will also share our perspective on the potential of dish models of neurodegenerative diseases for studying pathogenic cascades and therapeutic drug discovery.


Assuntos
Doença de Alzheimer/patologia , Técnicas de Cultura de Células/métodos , Células-Tronco Neurais/patologia , Precursor de Proteína beta-Amiloide/genética , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Células-Tronco Neurais/citologia
4.
FASEB J ; 29(8): 3335-41, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25903103

RESUMO

Soluble γ-secretase modulators (SGSMs) selectively decrease toxic amyloid ß (Aß) peptides (Aß42). However, their effect on the physiologic functions of γ-secretase has not been tested in human model systems. γ-Secretase regulates fate determination of neural progenitor cells. Thus, we studied the impact of SGSMs on the neuronal differentiation of ReNcell VM (ReN) human neural progenitor cells (hNPCs). Quantitative PCR analysis showed that treatment of neurosphere-like ReN cell aggregate cultures with γ-secretase inhibitors (GSIs), but not SGSMs, induced a 2- to 4-fold increase in the expression of the neuronal markers Tuj1 and doublecortin. GSI treatment also induced neuronal marker protein expression, as shown by Western blot analysis. In the same conditions, SGSM treatment selectively reduced endogenous Aß42 levels by ∼80%. Mechanistically, we found that Notch target gene expressions were selectively inhibited by a GSI, not by SGSM treatment. We can assert, for the first time, that SGSMs do not affect the neuronal differentiation of hNPCs while selectively decreasing endogenous Aß42 levels in the same conditions. Our results suggest that our hNPC differentiation system can serve as a useful model to test the impact of GSIs and SGSMs on both endogenous Aß levels and γ-secretase physiologic functions including endogenous Notch signaling.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Diferenciação Celular/fisiologia , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Fragmentos de Peptídeos/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Células Cultivadas , Proteínas do Domínio Duplacortina , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Neuropeptídeos/metabolismo , Transdução de Sinais/fisiologia , Tubulina (Proteína)/metabolismo
5.
Neurodegener Dis ; 13(2-3): 64-68, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24217025

RESUMO

BACKGROUND: Familial Alzheimer's disease (FAD) mutations in presenilin (PS) modulate PS/γ-secretase activity and therefore contribute to AD pathogenesis. Previously, we found that PS/γ-secretase cleaves voltage-gated sodium channel ß2-subunits (Navß2), releases the intracellular domain of Navß2 (ß2-ICD), and thereby, increases intracellular sodium channel α-subunit Nav1.1 levels. Here, we tested whether FAD-linked PS1 mutations modulate Navß2 cleavages and Nav1.1 levels. OBJECTIVE: It was the aim of this study to analyze the effects of PS1-linked FAD mutations on Navß2 processing and Nav1.1 levels in neuronal cells. METHODS: We first generated B104 rat neuroblastoma cells stably expressing Navß2 and wild-type PS1 (wtPS1), PS1 with one of three FAD mutations (E280A, M146L or ΔE9), or PS1 with a non-FAD mutation (D333G). Navß2 processing and Nav1.1 protein and mRNA levels were then analyzed by Western blot and real-time RT-PCR, respectively. RESULTS: The FAD-linked E280A mutation significantly decreased PS/γ-secretase-mediated processing of Navß2 as compared to wtPS1 controls, both in cells and in a cell-free system. Nav1.1 mRNA and protein levels, as well as the surface levels of Nav channel α-subunits, were also significantly reduced in PS1(E280A) cells. CONCLUSION: Our data indicate that the FAD-linked PS1(E280A) mutation decreases Nav channel levels by partially inhibiting the PS/γ-secretase-mediated cleavage of Navß2 in neuronal cells.


Assuntos
Mutação , Neurônios/metabolismo , Presenilinas/genética , Canais de Sódio Disparados por Voltagem/genética , Canais de Sódio Disparados por Voltagem/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Western Blotting , Células Cultivadas , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção
6.
J Neurosci ; 32(31): 10609-17, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22855810

RESUMO

Although the amyloid-ß(1-42) (Aß(1-42)) peptide involved in Alzheimer's disease is known to cause a dysregulation of intracellular Ca(2+) homeostasis, its molecular mechanisms still remain unclear. We report that the extracellular-dependent early increase (30 min) in intracellular calcium concentration ([Ca(2+)](i)), following Aß(1-42) exposure, caused the activation of calpain that in turn elicited a cleavage of the Na(+)/Ca(2+) exchanger isoform NCX3. This cleavage generated a hyperfunctional form of the antiporter and increased NCX currents (I(NCX)) in the reverse mode of operation. Interestingly, this NCX3 calpain-dependent cleavage was essential for the Aß(1-42)-dependent I(NCX) increase. Indeed, the calpain inhibitor calpeptin and the removal of the calpain-cleavage recognition sequence, via site-directed mutagenesis, abolished this effect. Moreover, the enhanced NCX3 activity was paralleled by an increased Ca(2+) content in the endoplasmic reticulum (ER) stores. Remarkably, the silencing in PC-12 cells or the knocking-out in mice of the ncx3 gene prevented the enhancement of both I(NCX) and Ca(2+) content in ER stores, suggesting that NCX3 was involved in the increase of ER Ca(2+) content stimulated by Aß(1-42). By contrast, in the late phase (72 h), when the NCX3 proteolytic cleavage abruptly ceased, the occurrence of a parallel reduction in ER Ca(2+) content triggered ER stress, as revealed by caspase-12 activation. Concomitantly, the late increase in [Ca(2+)](i) coincided with neuronal death. Interestingly, NCX3 silencing caused an earlier activation of Aß(1-42)-induced caspase-12. Indeed, in NCX3-silenced neurons, Aß(1-42) exposure hastened caspase-dependent apoptosis, thus reinforcing neuronal cell death. These results suggest that Aß(1-42), through Ca(2+)-dependent calpain activation, generates a hyperfunctional form of NCX3 that, by increasing Ca(2+) content into ER, delays caspase-12 activation and thus neuronal death.


Assuntos
Peptídeos beta-Amiloides/farmacologia , Caspase 3/metabolismo , Neurônios/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Proteólise/efeitos dos fármacos , Trocador de Sódio e Cálcio/metabolismo , Animais , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Calpaína/metabolismo , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Quelantes/farmacologia , Cricetinae , Cães , Relação Dose-Resposta a Droga , Ácido Egtázico/farmacologia , Embrião de Mamíferos , Retículo Endoplasmático/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Feminino , Hipocampo/citologia , Masculino , Camundongos , Camundongos Knockout , Fator de Crescimento Neural/farmacologia , Técnicas de Patch-Clamp , Interferência de RNA/fisiologia , Ratos , Sódio/metabolismo , Trocador de Sódio e Cálcio/genética , Fatores de Tempo , Transfecção , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
7.
Adv Exp Med Biol ; 961: 307-16, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23224890

RESUMO

The initiation of microglial responses to the ischemic injury involves modifications of calcium homeostasis. Changes in [Ca(2+)](i) levels have also been shown to influence the developmental processes that accompany the transition of human oligodendrocyte precursor cells (OPCs) into mature myelinating oligodendrocytes and are required for the initiation of myelination and remyelination processes.We investigated the regional and temporal changes of NCX1 protein in microglial cells of the peri-infarct and core regions after permanent middle cerebral artery occlusion (pMCAO). Interestingly, 3 and 7 days after pMCAO, NCX1 signal strongly increased in the round-shaped microglia invading the infarct core. Cultured microglial cells from the core displayed increased NCX1 expression as compared with contralateral cells and showed enhanced NCX activity in the reverse mode of operation. Similarly, NCX activity and NCX1 protein expression were significantly enhanced in BV2 microglia exposed to oxygen and glucose deprivation, whereas NCX2 and NCX3 were downregulated. Interestingly, in NCX1-silenced cells, [Ca(2+)](i) increase induced by hypoxia was completely prevented. The upregulation of NCX1 expression and activity observed in microglia after pMCAO suggests a relevant role of NCX1 in modulating microglia functions in the postischemic brain.Next, we explored whether calcium signals mediated by NCX1, NCX2, or NCX3 play a role in oligodendrocyte maturation. Functional studies, as well as mRNA and protein expression analyses, revealed that NCX1 and NCX3, but not NCX2, were divergently modulated during OPC differentiation into oligodendrocyte. In fact, while NCX1 was downregulated, NCX3 was strongly upregulated during the oligodendrocyte development. Whereas the knocking down of the NCX3 isoform in OPCs prevented the upregulation of the myelin protein markers CNPase and MBP, its overexpression induced their upregulation. Furthermore, NCX3 knockout mice exhibited not only a reduced size of spinal cord but also a marked hypomyelination, as revealed by the decrease in MBP expression and by the accompanying increase in OPCs number. Our findings indicate that calcium signaling mediated by NCX3 plays a crucial role in oligodendrocyte maturation and myelin formation.


Assuntos
Isquemia Encefálica/metabolismo , Sinalização do Cálcio , Diferenciação Celular , Microglia/metabolismo , Bainha de Mielina/metabolismo , Trocador de Sódio e Cálcio/metabolismo , Animais , Isquemia Encefálica/genética , Isquemia Encefálica/patologia , Regulação da Expressão Gênica/genética , Humanos , Camundongos , Camundongos Knockout , Microglia/patologia , Proteína Básica da Mielina/biossíntese , Proteína Básica da Mielina/genética , Bainha de Mielina/genética , Bainha de Mielina/patologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia
8.
Adv Healthc Mater ; 7(1)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28845922

RESUMO

Deciphering the human brain pathophysiology remains one of the greatest challenges of the 21st century. Neurological disorders represent a significant proportion of diseases burden; however, the complexity of the brain physiology makes it challenging to model its diseases. Simple in vitro models have been very useful for precise measurements in controled conditions. However, existing models are limited in their ability to replicate complex interactions between various cells in the brain. Studying human brain requires sophisticated models to reconstitute the tangled architecture and functions of brain cells. Recently, advances in the development of three-dimensional (3D) brain cell culture models have begun to recapitulate various aspects of the human brain physiology in vitro and replicate basic disease processes of Alzheimer's disease, amyotrophic lateral sclerosis, and microcephaly. In this review, we discuss the progress, advantages, limitations, and future directions of 3D cell culture systems for modeling the human brain development and diseases.


Assuntos
Doença de Alzheimer/patologia , Doença de Alzheimer/terapia , Encéfalo/citologia , Organoides/citologia , Materiais Biocompatíveis/química , Encéfalo/patologia , Técnicas de Cultura de Células , Humanos , Microfluídica/métodos , Organoides/fisiologia
9.
Sci Rep ; 8(1): 2450, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29402979

RESUMO

Neurospheroids are commonly used for in vitro disease modeling and drug screening. However, the heterogeneity in size of the neurospheroids mixtures available through current methods limits their utility when employed for basic mechanistic studies of neurodegenerative diseases or screening for new interventions. Here, we generate neurospheroids from immortalized neural progenitor cells and human induced pluripotent stem cells that are uniform in size, into large-scale arrays. In proof of concept experiments, we validate the neurospheroids array as a sensitive and robust tool for screening compounds over extended time. We show that when suspended in three-dimensional extracellular matrix up to several weeks, the stem cell-derived neurospheroids display extensive neurite outgrowth and extend thick bundles of dendrites outward. We also cultivate genetically-engineered stem cell-derived neurospheroids with familial Alzheimer's disease mutations for eight weeks in our microarray system. Interestingly, we observed robust accumulation of amyloid-ß and phosphorylated tau, key hallmarks of Alzheimer's disease. Overall, our in vitro model for engineering neurospheroid arrays is a valuable tool for studying complex neurodegenerative diseases and accelerating drug discovery.


Assuntos
Peptídeos beta-Amiloides/genética , Engenharia Celular/instrumentação , Neurônios/ultraestrutura , Esferoides Celulares/ultraestrutura , Análise Serial de Tecidos/métodos , Proteínas tau/genética , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Biomarcadores/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular , Engenharia Celular/métodos , Tamanho Celular , Expressão Gênica , Genes Reporter , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Biológicos , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/ultraestrutura , Crescimento Neuronal , Neurônios/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Esferoides Celulares/metabolismo , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo , Proteínas tau/metabolismo
10.
Nat Neurosci ; 21(7): 941-951, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29950669

RESUMO

Alzheimer's disease (AD) is characterized by beta-amyloid accumulation, phosphorylated tau formation, hyperactivation of glial cells, and neuronal loss. The mechanisms of AD pathogenesis, however, remain poorly understood, partially due to the lack of relevant models that can comprehensively recapitulate multistage intercellular interactions in human AD brains. Here we present a new three-dimensional (3D) human AD triculture model using neurons, astrocytes, and microglia in a 3D microfluidic platform. Our model provided key representative AD features: beta-amyloid aggregation, phosphorylated tau accumulation, and neuroinflammatory activity. In particular, the model mirrored microglial recruitment, neurotoxic activities such as axonal cleavage, and NO release damaging AD neurons and astrocytes. Our model will serve to facilitate the development of more precise human brain models for basic mechanistic studies in neural-glial interactions and drug discovery.


Assuntos
Doença de Alzheimer/patologia , Astrócitos/patologia , Inflamação/patologia , Microglia/patologia , Degeneração Neural/patologia , Neurônios/patologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Astrócitos/metabolismo , Técnicas de Cultura de Células , Humanos , Inflamação/metabolismo , Microglia/metabolismo , Degeneração Neural/metabolismo , Neurônios/metabolismo , Fosforilação , Proteínas tau/metabolismo
11.
Mol Neurodegener ; 10: 31, 2015 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-26202512

RESUMO

BACKGROUND: Accumulation of the ß-amyloid peptide (Aß) is a major pathological hallmark of Alzheimer's disease (AD). Recent studies have shown that synaptic Aß toxicity may directly impair synaptic function. However, proteins regulating Aß generation at the synapse have not been characterized. Here, we sought to identify synaptic proteins that interact with the extracellular domain of APP and regulate Aß generation. RESULTS: Affinity purification-coupled mass spectrometry identified members of the Synaptotagmin (Syt) family as novel interacting proteins with the APP ectodomain in mouse brains. Syt-1, -2 and -9 interacted with APP in cells and in mouse brains in vivo. Using a GST pull-down approach, we have further demonstrated that the Syt interaction site lies in the 108 amino acids linker region between the E1 and KPI domains of APP. Stable overexpression of Syt-1 or Syt-9 with APP in CHO and rat pheochromocytoma cells (PC12) significantly increased APP-CTF and sAPP levels, with a 2 to 3 fold increase in secreted Aß levels in PC12 cells. Moreover, using a stable knockdown approach to reduce the expression of endogenous Syt-1 in PC12 cells, we have observed a ~ 50% reduction in secreted Aß generation. APP processing also decreased in these cells, shown by lower CTF levels. Lentiviral-mediated knock down of endogenous Syt-1 in mouse primary neurons also led to a significant reduction in both Aß40 and Aß42 generation. As secreted sAPPß levels were significantly reduced in PC12 cells lacking Syt-1 expression, our results suggest that Syt-1 regulates Aß generation by modulating BACE1-mediated cleavage of APP. CONCLUSION: Altogether, our data identify the synaptic vesicle proteins Syt-1 and 9 as novel APP-interacting proteins that promote Aß generation and thus may play an important role in the pathogenesis of AD.


Assuntos
Precursor de Proteína beta-Amiloide/metabolismo , Sinaptotagminas/fisiologia , Secretases da Proteína Precursora do Amiloide/fisiologia , Peptídeos beta-Amiloides/biossíntese , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/química , Animais , Ácido Aspártico Endopeptidases/fisiologia , Células CHO , Cricetinae , Cricetulus , Camundongos , Neurônios/metabolismo , Células PC12 , Fragmentos de Peptídeos/biossíntese , Fragmentos de Peptídeos/metabolismo , Mapeamento de Interação de Proteínas , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Interferência de RNA , RNA Interferente Pequeno/genética , Ratos , Proteínas Recombinantes de Fusão/metabolismo , Especificidade da Espécie , Sinaptotagmina I/deficiência , Sinaptotagmina I/genética , Sinaptotagmina I/fisiologia , Sinaptotagmina II/fisiologia
12.
US Neurol ; 11(2): 102-105, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-27019672

RESUMO

The "amyloid ß hypothesis" of Alzheimer's disease (AD) has been the reigning hypothesis explaining pathogenic mechanisms of AD over the last two decades. However, this hypothesis has not been fully validated in animal models, and several major unresolved issues remain. We recently developed a human neural cell culture model of AD based on a three-dimensional (3D) cell culture system. This unique, cellular model recapitulates key events of the AD pathogenic cascade, including ß-amyloid plaques and neurofibrillary tangles. Our 3D human neural cell culture model system provides a premise for a new generation of cellular AD models that can serve as a novel platform for studying pathogenic mechanisms and for high-throughput drug screening in a human brain-like environment.

13.
Nat Protoc ; 10(7): 985-1006, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26068894

RESUMO

Stem cell technologies have facilitated the development of human cellular disease models that can be used to study pathogenesis and test therapeutic candidates. These models hold promise for complex neurological diseases such as Alzheimer's disease (AD), because existing animal models have been unable to fully recapitulate all aspects of pathology. We recently reported the characterization of a novel 3D culture system that exhibits key events in AD pathogenesis, including extracellular aggregation of amyloid-ß (Aß) and accumulation of hyperphosphorylated tau. Here we provide instructions for the generation and analysis of 3D human neural cell cultures, including the production of genetically modified human neural progenitor cells (hNPCs) with familial AD mutations, the differentiation of the hNPCs in a 3D matrix and the analysis of AD pathogenesis. The 3D culture generation takes 1-2 d. The aggregation of Aß is observed after 6 weeks of differentiation, followed by robust tau pathology after 10-14 weeks.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Modelos Neurológicos , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Linhagem Celular , Humanos , Mutação , Agregação Patológica de Proteínas/metabolismo , Proteínas tau/metabolismo
14.
Mol Neurodegener ; 9: 4, 2014 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-24405708

RESUMO

BACKGROUND: Although BACE1 is a major therapeutic target for Alzheimer's disease (AD), potential side effects of BACE1 inhibition are not well characterized. BACE1 cleaves over 60 putative substrates, however the majority of these cleavages have not been characterized. Here we investigated BACE1-mediated cleavage of human contactin-2, a GPI-anchored cell adhesion molecule. RESULTS: Our initial protein sequence analysis showed that contactin-2 harbors a strong putative BACE1 cleavage site close to its GPI membrane linker domain. When we overexpressed BACE1 in CHO cells stably transfected with human contactin-2, we found increased release of soluble contactin-2 in the conditioned media. Conversely, pharmacological inhibition of BACE1 in CHO cells expressing human contactin-2 and mouse primary neurons decreased soluble contactin-2 secretion. The BACE1 cleavage site mutation 1008MM/AA dramatically impaired soluble contactin-2 release. We then asked whether contactin-2 release induced by BACE1 expression would concomitantly decrease cell surface levels of contactin-2. Using immunofluorescence and surface-biotinylation assays, we showed that BACE1 activity tightly regulates contactin-2 surface levels in CHO cells as well as in mouse primary neurons. Finally, contactin-2 levels were decreased in Alzheimer's disease brain samples correlating inversely with elevated BACE1 levels in the same samples. CONCLUSION: Our results clearly demonstrate that mouse and human contactin-2 are physiological substrates for BACE1. BACE1-mediated contactin-2 cleavage tightly regulates the surface expression of contactin-2 in neuronal cells. Given the role of contactin-2 in cell adhesion, neurite outgrowth and axon guidance, our data suggest that BACE1 may play an important role in these physiological processes by regulating contactin-2 surface levels.


Assuntos
Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Contactina 2/metabolismo , Animais , Western Blotting , Encéfalo/metabolismo , Células CHO , Membrana Celular/metabolismo , Cricetinae , Cricetulus , Imunofluorescência , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA