Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 628(8009): 804-810, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538783

RESUMO

Sugarcane, the world's most harvested crop by tonnage, has shaped global history, trade and geopolitics, and is currently responsible for 80% of sugar production worldwide1. While traditional sugarcane breeding methods have effectively generated cultivars adapted to new environments and pathogens, sugar yield improvements have recently plateaued2. The cessation of yield gains may be due to limited genetic diversity within breeding populations, long breeding cycles and the complexity of its genome, the latter preventing breeders from taking advantage of the recent explosion of whole-genome sequencing that has benefited many other crops. Thus, modern sugarcane hybrids are the last remaining major crop without a reference-quality genome. Here we take a major step towards advancing sugarcane biotechnology by generating a polyploid reference genome for R570, a typical modern cultivar derived from interspecific hybridization between the domesticated species (Saccharum officinarum) and the wild species (Saccharum spontaneum). In contrast to the existing single haplotype ('monoploid') representation of R570, our 8.7 billion base assembly contains a complete representation of unique DNA sequences across the approximately 12 chromosome copies in this polyploid genome. Using this highly contiguous genome assembly, we filled a previously unsized gap within an R570 physical genetic map to describe the likely causal genes underlying the single-copy Bru1 brown rust resistance locus. This polyploid genome assembly with fine-grain descriptions of genome architecture and molecular targets for biotechnology will help accelerate molecular and transgenic breeding and adaptation of sugarcane to future environmental conditions.


Assuntos
Genoma de Planta , Poliploidia , Saccharum , Cromossomos de Plantas/genética , Genoma de Planta/genética , Haplótipos/genética , Hibridização Genética/genética , Melhoramento Vegetal , Saccharum/classificação , Saccharum/genética , Biotecnologia , Padrões de Referência , DNA de Plantas/genética
2.
Theor Appl Genet ; 127(8): 1719-32, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24916990

RESUMO

KEY MESSAGE: Using GWAS approaches, we detected independent resistant markers in sugarcane towards a vectored virus disease. Based on comparative genomics, several candidate genes potentially involved in virus/aphid/plant interactions were pinpointed. Yellow leaf of sugarcane is an emerging viral disease whose causal agent is a Polerovirus, the Sugarcane yellow leaf virus (SCYLV) transmitted by aphids. To identify quantitative trait loci controlling resistance to yellow leaf which are of direct relevance for breeding, we undertook a genome-wide association study (GWAS) on a sugarcane cultivar panel (n = 189) representative of current breeding germplasm. This panel was fingerprinted with 3,949 polymorphic markers (DArT and AFLP). The panel was phenotyped for SCYLV infection in leaves and stalks in two trials for two crop cycles, under natural disease pressure prevalent in Guadeloupe. Mixed linear models including co-factors representing population structure fixed effects and pairwise kinship random effects provided an efficient control of the risk of inflated type-I error at a genome-wide level. Six independent markers were significantly detected in association with SCYLV resistance phenotype. These markers explained individually between 9 and 14 % of the disease variation of the cultivar panel. Their frequency in the panel was relatively low (8-20 %). Among them, two markers were detected repeatedly across the GWAS exercises based on the different disease resistance parameters. These two markers could be blasted on Sorghum bicolor genome and candidate genes potentially involved in plant-aphid or plant-virus interactions were localized in the vicinity of sorghum homologs of sugarcane markers. Our results illustrate the potential of GWAS approaches to prospect among sugarcane germplasm for accessions likely bearing resistance alleles of significant effect useful in breeding programs.


Assuntos
Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Luteoviridae/fisiologia , Doenças das Plantas/genética , Doenças das Plantas/virologia , Saccharum/genética , Saccharum/virologia , Genes de Plantas , Folhas de Planta/genética , Folhas de Planta/virologia , Locos de Características Quantitativas/genética , Característica Quantitativa Herdável , Análise de Regressão , Sorghum/genética
3.
Theor Appl Genet ; 125(5): 825-36, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22572763

RESUMO

Modern sugarcane cultivars (Saccharum spp., 2n = 100-130) are high polyploid, aneuploid and of interspecific origin. A major gene (Bru1) conferring resistance to brown rust, caused by the fungus Puccinia melanocephala, has been identified in cultivar R570. We analyzed 380 modern cultivars and breeding materials covering the worldwide diversity with 22 molecular markers genetically linked to Bru1 in R570 within a 8.2 cM segment. Our results revealed a strong LD in the Bru1 region and strong associations between most of the markers and rust resistance. Two PCR markers, that flank the Bru1-bearing segment, were found completely associated with one another and only in resistant clones representing efficient molecular diagnostic for Bru1. On this basis, Bru1 was inferred in 86 % of the 194 resistant sugarcane accessions, revealing that it constitutes the main source of brown rust resistance in modern cultivars. Bru1 PCR diagnostic markers should be particularly useful to identify cultivars with potentially alternative sources of resistance to diversify the basis of brown rust resistance in breeding programs.


Assuntos
Basidiomycota/genética , Genes de Plantas/genética , Haplótipos/genética , Imunidade Inata/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Saccharum/microbiologia , Basidiomycota/imunologia , Mapeamento Cromossômico , Cromossomos de Plantas , DNA de Plantas/genética , Marcadores Genéticos , Desequilíbrio de Ligação , Doenças das Plantas/imunologia , Reação em Cadeia da Polimerase , Saccharum/genética
4.
Cytogenet Genome Res ; 109(1-3): 27-33, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15753555

RESUMO

We review here the progress that has been achieved using molecular cytogenetics to analyze the genome structure of sugarcane (Saccharum spp) and banana (Musa spp), two crops that are polyploid, of interspecific origin and with chromosomes not distinguishable by their gross morphology. In Saccharum, molecular cytogenetics enabled us to determine the basic chromosome number of two species, Saccharum officinarum and S. spontaneum, involved in the origin of modern cultivars, to quantify the proportion of chromosomes of these species in the genome of modern cultivars, to assess the extent of interspecific chromosome recombination and to clarify the origin of the related species S. barberi. These techniques are also used to monitor introgression with related genera. In Musa, GISH enabled us to differentiate the four genomes involved in banana cultivars and allowed us to determine the genome constitution of several cultivars. FISH was used to analyze the distribution of repeated sequences along the genome.


Assuntos
Genoma de Planta , Musa/genética , Saccharum/genética , Cromossomos de Plantas/genética , DNA de Plantas/genética , Hibridização in Situ Fluorescente , Poliploidia
5.
Genetics ; 142(3): 987-1000, 1996 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-8849904

RESUMO

Sugarcane cultivars are polyploid, aneuploid, interspecific hybrids between the domesticated species Saccharum officinarum and the wild relative S. spontaneum. Cultivar chromosome numbers range from 100 to 130 with approximately 10% contributed by S. spontaneum. We have undertaken a mapping study on the progeny of a selfed cultivar, R570, to analyze this complex genome structure. A set of 128 restriction fragment length polymorphism probes and one isozyme was used. Four hundred and eight markers were placed onto 96 cosegregation groups, based on linkages in coupling only. These groups could tentatively be assembled into 10 basic linkage groups on the basis of common probes. Origin of markers was investigated for 61 probes and the isozyme, leading to the identification of 80 S. officinarum and 66 S. spontaneum derived markers, respectively. Their distribution in cosegregation groups showed better map coverage for the S. spontaneum than for the S. officinarum genome fraction and occasional recombination between the two genomes. The study of repulsions between markers suggested the prevalence of random pairing between chromosomes, typical of autopolyploids. However, cases of preferential pairing between S. spontaneum chromosomes were also detected. A tentative Saccharum map was constructed by pooling linkage information for each linkage group.


Assuntos
Mapeamento Cromossômico , Marcadores Genéticos , Genoma de Planta , Plantas Comestíveis/genética , Aneuploidia , Cruzamentos Genéticos , Ligação Genética , Polimorfismo Genético , Polimorfismo de Fragmento de Restrição , Poliploidia
6.
Theor Appl Genet ; 105(6-7): 1027-1037, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12582930

RESUMO

The genetics of current sugarcane cultivars ( Saccharum spp.) is outstandingly complex, due to a high ploidy level and an interspecific origin which leads to the presence of numerous chromosomes belonging to two ancestral genomes. In order to analyse the inheritance of quantitative traits, we have undertaken an extensive Quantitative Trait Allele (QTA) mapping study based on a population of 295 progenies derived from the selfing of cultivar R570, using about 1,000 AFLP markers scattered on about half of the genome. The population was evaluated in a replicated trial for four basic yield components, plant height, stalk number, stalk diameter and brix, in two successive crop-cycles. Forty putative QTAs were found for the four traits at P = 5 x 10(-3), of which five appeared in both years. Their individual size ranged between 3 and 7% of the whole variation. The stability across years was improved when limiting threshold stringency. All these results depict the presence in the genome of numerous QTAs, with little effects, fluctuating slightly across cycles, on the verge to being perceptible given the experimental resolution. Epistatic interactions were also explored and 41 independent di-genic interactions were found at P = (5 x 10(-3))(2). Altogether the putative genetic factors revealed here explain from 30 to 55% of the total phenotypic variance depending on the trait. The tentative assignment of some QTAs to the ancestral genomes showed a small majority of contributions as expected from the ancestral phenotypes. This is the first extensive QTL mapping study performed in cultivated sugarcane.

7.
Plant Dis ; 85(3): 282-286, 2001 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30832043

RESUMO

Two different inoculation techniques were investigated before studying the reaction of the major rust resistance gene of sugarcane cultivar R 570 against isolates of Puccinia melanocephala from different geographic locations. Cultivar R 570 exhibited severe rust symptoms when in vitro plantlets were inoculated with a rust isolate from Réunion Island, but a good correlation with field resistance was observed when detached leaves were inoculated with the pathogen. This latter technique was then used to inoculate R 570 and a sample of its self progeny with rust isolates from Brazil, Colombia, Florida (three isolates), Guadeloupe, Réunion Island, and Zimbabwe. R 570 was resistant to all isolates of P. melanocephala, and the segregation of resistance in the progeny did not change with the isolates, suggesting that a single gene, or a single chromosomic region, was involved in the resistance against all tested isolates. This major resistance gene has, therefore, potential value to improve resistance to rust in various geographic regions.

8.
Trop Plant Biol ; 5(3): 233-243, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22905278

RESUMO

Mutator-like transposase is the most represented transposon transcript in the sugarcane transcriptome. Phylogenetic reconstructions derived from sequenced transcripts provided evidence that at least four distinct classes exist (I-IV) and that diversification among these classes occurred early in Angiosperms, prior to the divergence of Monocots/Eudicots. The four previously described classes served as probes to select and further sequence six BAC clones from a genomic library of cultivar R570. A total of 579,352 sugarcane base pairs were produced from these "Mutator system" BAC containing regions for further characterization. The analyzed genomic regions confirmed that the predicted structure and organization of the Mutator system in sugarcane is composed of two true transposon lineages, each containing a specific terminal inverted repeat and two transposase lineages considered to be domesticated. Each Mutator transposase class displayed a particular molecular structure supporting lineage specific evolution. MUSTANG, previously described domesticated genes, are located in syntenic regions across Sacharineae and, as expected for a host functional gene, posses the same gene structure as in other Poaceae. Two sequenced BACs correspond to hom(eo)logous locus with specific retrotransposon insertions that discriminate sugarcane haplotypes. The comparative studies presented, add information to the Mutator systems previously identified in the maize and rice genomes by describing lineage specific molecular structure and genomic distribution pattern in the sugarcane genome. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s12042-012-9104-y) contains supplementary material, which is available to authorized users.

9.
Sex Dev ; 2(1): 43-54, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18418034

RESUMO

We identified DNA markers linked to sex determining genes in six closely related species of tilapiine fishes. The mode of sex determination differed among species. In Oreochromis karongae and Tilapia mariae the sex-determining locus is on linkage group (LG) 3 and the female is heterogametic (WZ-ZZ system). In O. niloticus and T. zillii the sex-determining locus is on LG1 and the male is heterogametic (XX-XY system). A more complex pattern was observed in O. aureus and O. mossambicus, in which markers on both LG1 and LG3 were associated with sex. We found evidence for sex-linked lethal effects on LG1, as well as interactions between loci in the two linkage groups. Comparison of genetic and physical maps demonstrated a broad region of recombination suppression harboring the sex-determining locus on LG3. Sex-specific recombination suppression was found in the female heterogametic sex. Sequence analysis showed the accumulation of repetitive elements in this region. Phylogenetic analysis suggests that at least two transitions in the mode of sex determination have occurred in this clade. This variation in sex determination mechanisms among closely related species makes tilapias an excellent model system for studying the evolution of sex chromosomes in vertebrates.


Assuntos
Marcadores Genéticos , Processos de Determinação Sexual , Tilápia/genética , Animais , Aquicultura , Evolução Biológica , Cruzamento , Feminino , Genótipo , Hibridização in Situ Fluorescente , Masculino , Fenótipo , Filogenia , Recombinação Genética , Cromossomos Sexuais , Especificidade da Espécie
10.
Theor Appl Genet ; 112(7): 1382-91, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16552554

RESUMO

Modern sugarcane cultivars (Saccharum spp) are highly polyploïd and aneuploid interspecific hybrids (2n = 100-130). Two genetic maps were constructed using a population of 198 progeny from a cross between R570, a modern cultivar, and MQ76-53, an old Australian clone derived from a cross between Trojan (a modern cultivar) and SES528 (a wild Saccharum spontaneum clone). A total of 1,666 polymorphic markers were produced using 37 AFLP primer combinations, 46 SSRs and 9 RFLP probes. Linkage analysis led to the construction of 86 cosegregation groups for R570 and 105 cosegregation groups for MQ76-53 encompassing 424 and 536 single dose markers, respectively. The cumulative length of the R570 map was 3,144 cM, while that of the MQ76-53 map was 4,329 cM. Here, we integrated mapping information obtained on R570 in this study with that derived from a previous map based on a selfed R570 population. Two new genes controlling Mendelian traits were localized on the MQ76-53 map: a gene controlling the red stalk colour was linked at 6.5 cM to an AFLP marker and a new brown rust resistance gene was linked at 23 cM to an AFLP marker. Besides another previously identified brown rust resistance gene (Bru1), these two genes are the only other major genes to be identified in sugarcane so far.


Assuntos
Mapeamento Cromossômico , Genes de Plantas , Imunidade Inata/genética , Doenças das Plantas/microbiologia , Saccharum/genética , Basidiomycota , Cromossomos de Plantas , Cruzamentos Genéticos , Hibridização Genética , Poliploidia , Saccharum/microbiologia
11.
Genome ; 43(6): 1033-7, 2000 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11195335

RESUMO

Erianthus arundinaceus has great potential as a germplasm source for better ratoonability, vigour, tolerance to environmental stresses, and disease resistance in sugarcane. Many unsuccessful attempts have been made to introduce these characters into modern sugarcane cultivars. We report on significant progress made since molecular tools were implemented. Sequence-tagged PCR, revealing size variation in the 5S rDNA cluster, was performed on intact leaf tissue to identify genuine hybrids six weeks after germination. This early screening of seedlings avoids the loss of genuine hybrids due to competition with selfed progeny. Of 96 crosses made involving female Saccharum officinarum or sugarcane cultivars (Saccharum spp.) and male E. arundinaceus, 26 were fertile producing 1328 seedlings. Thirty-seven genuine hybrids were unequivocally identified but only 19 have survived. Genuine hybrids were produced from only three crosses, all involving S. officinarum as the female parent. Chromosome elimination was observed in all seven hybrids analyzed using genomic in situ hybridization (GISH). Very little cross-hybridization was observed between the genomes of the two species after GISH, confirming recent molecular studies which showed that E. arundinaceus is quite distant from the genus Saccharum. The major limitation in the introgression of E. arundinaceus resides now in the apparent sterility of the hybrids.


Assuntos
DNA Intergênico/genética , Poaceae/genética , Cromossomos , Genoma de Planta , Hibridização Genética , Cariotipagem , Reação em Cadeia da Polimerase
12.
Mol Gen Genet ; 250(4): 405-13, 1996 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-8602157

RESUMO

Cultivated sugarcane clones (Saccharum spp., 2n=100 to 130) are derived from complex interspecific hybridizations between the species S. officinarum and S. spontaneum. Using comparative genomic DNA in situ hybridization, we demonstrated that it is possible to distinguish the chromosomes contributed by these two species in an interspecific F1 hybrid and a cultivated clone, R570. In the interspecific F1 studied, we observed n + n transmission of the parental chromosomes instead of the peculiar 2n + n transmission usually described in such crosses. Among the chromosomes of cultivar R570 (2n = 107-115) about 10% were identified as originating from S. spontaneum and about 10% were identified as recombinant chromosomes between the two species S. officinarum and S. spontaneum. This demonstrated for the first time the occurrence of recombination between the chromosomes of these two species. The rDNA sites were located by in situ hybridization in these two species and the cultivar R570. This supported different basic chromosome numbers and chromosome structural differences between the two species and provided a first bridge between physical and genetical mapping in sugarcane.


Assuntos
Genoma de Planta , Plantas/genética , Poliploidia , Mapeamento Cromossômico , Cruzamentos Genéticos , DNA de Plantas/genética , DNA Ribossômico/genética , Hibridização in Situ Fluorescente , Recombinação Genética , Especificidade da Espécie
13.
Heredity (Edinb) ; 93(5): 460-7, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15292909

RESUMO

Chromosome pairing at meiosis is an essential feature in cell biology, which determines trait inheritance and species evolution. Complex polyploids may display diverse pairing affinities and offer favorable situations for studying meiosis. The genus Saccharum encompasses diverse forms of polyploids with predominantly bivalent pairing. We have focused on a modern cultivar of sugarcane, R570, and taken advantage of a particular single copy probe (BNL 12.06) revealing 11 alleles by restriction fragment length polymorphism (RFLP). As for other cultivars, R570 is highly polyploid (2n=ca. 115) and indirectly derived from interspecific hybridization between Saccharum officinarum (2n=80, x=10) and S. spontaneum (2n=40-128, x=8). Here we determined the doses of the various BNL12.06 RFLP alleles among 282 progeny of R570 and estimated the mutual pairing frequencies among the corresponding homo- or homoeologous chromosomes using a maximum likelihood method. The result is an atypical picture, with pairing frequencies ranging from 0 to 40% and differential affinities leading to the identification of several chromosome subsets. This example illustrates the unsystematic meiotic behavior in a complex polyploid. It highlights a continuous range of pairing affinities between chromosomes and pinpoints a strong role of individual chromosome features, partly related to their ancestral origin, in the determination of these affinities.


Assuntos
Segregação de Cromossomos , Cromossomos de Plantas/genética , Marcadores Genéticos , Meiose/fisiologia , Saccharum/genética , Evolução Molecular , Ligação Genética , Polimorfismo de Fragmento de Restrição , Poliploidia
14.
Genome ; 38(4): 635-45, 1995 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-7672599

RESUMO

Cultivated sorghum (Sorghum bicolor ssp. bicolor) is classified into five main races on the basis of spikelet morphology. Isozyme analyses provided new insight into the genetic diversity of sorghum and revealed marked geographic grouping, while nuclear restriction fragment length polymorphisms showed racial differentiation and intraguinea race differentiation. Wild sorghum is diploid or tetraploid and African sorghum (S. bicolor ssp. arundinaceum) is classified into four races, that are considered to be progenitors of cultivated sorghum. We performed mitochondrial DNA analyses to compare the diversity of wild and cultivated sorghum and to study the genetic origin of guinea margaritiferum. The same overall patterns were obtained with the different phenogram construction techniques. Our results confirmed the specificity of guinea margaritiferum and demonstrated the presence of two genetic entities within this subrace. Another guinea group was also noted, which corresponded to Asian guinea roxburghii. In wild sorghum, the arundinaceum race appeared to be homogenous, while the verticilliflorum race was separated into two groups, one of which was associated with the arundinaceum race. The diversity observed in cultivated forms was found to be encompassed within the wild pool, except for one guinea margaritiferum group. There did not seem to be any particular relationship between wild races and cultivated races.


Assuntos
DNA Mitocondrial/genética , Grão Comestível/genética , Variação Genética , Família Multigênica , Fenótipo
15.
Theor Appl Genet ; 107(3): 470-8, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12759729

RESUMO

Phosphoenolpyruvate carboxylases (PEPCs) are encoded by a small multigenic family. In order to characterise this gene family in sugarcane, seven DNA fragments displaying a high homology with grass PEPC genes were isolated using polymerase chain reaction-based cloning. A phylogenetic study revealed the existence of four main PEPC gene lineages in grasses and particularly in sugarcane. Moreover, this analysis suggests that grass C4 PEPC has likely derived from a root pre-existing isoform in an ancestral species. Using the Northern-dot-blot method, we studied the expression of the four PEPC gene classes in sugarcane cv. R570. We confirmed that transcript accumulation of the C4 PEPC gene (ppc-C4) mainly occurs in the green leaves and is light-induced. We also showed that another member of this gene family (ppc-aR) is more highly transcribed in the roots. The constitutive expression for a previously characterised gene (ppc-aL2) was confirmed. Lastly, the transcript accumulation of the fourth PEPC gene class (ppc-aL1) was not revealed. Length polymorphism in non-coding regions for three PEPC gene lineages enabled us to develop sequence-tagged site PEPC markers in sugarcane. We analysed the segregation of PEPC fragments in self-pollinated progenies of cv. R570 and found co-segregating fragments for two PEPC gene lineages. This supports the hypothesis that diversification of the PEPC genes involved duplications, probably in tandem.


Assuntos
Família Multigênica/genética , Fosfoenolpiruvato Carboxilase/genética , Filogenia , Saccharum/genética , Sequência de Bases , Northern Blotting , Análise por Conglomerados , Primers do DNA , Dados de Sequência Molecular , Especificidade de Órgãos , Polimorfismo de Fragmento de Restrição , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Análise de Sequência de DNA
16.
Genome ; 41(6): 854-64, 1998 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9924794

RESUMO

EaCIR1, a 371-bp Erianthus-specific satellite DNA sequence, was cloned from TaqI restricted genomic DNA after agarose-gel electrophoresis. This sequence has 77% homology with a 365-bp satellite of Helictotrichon convolutum and 72% homology with a 353-bp tandem repeat sequence from Oryza sativa. PCR primers defined in the conserved regions of these repetitive sequences were used to isolate other satellite DNAs in different representatives of the Saccharum complex: SoCIR1 in Saccharum officinarum, SrCIR1 in Saccharum robustum, SsCIR1 and SsCIR2 in Saccharum spontaneum, and MsCIR1 in Miscanthus sinensis. EaCIR1 and SoCIR1 were localized to subtelomeric regions of the chromosomes by fluorescence in situ hybridization. Southern hybridization experiments, using two representatives of this repeat sequence family as probes, illustrated contrasting species-specificity and demonstrated the existence of similar repetitive elements in sorghum and maize.


Assuntos
DNA de Plantas/isolamento & purificação , DNA Satélite/isolamento & purificação , Poaceae/genética , Sequência de Bases , DNA de Plantas/química , DNA Satélite/química , Eletroforese em Gel de Ágar , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Sequências Repetitivas de Ácido Nucleico , Mapeamento por Restrição , Alinhamento de Sequência
17.
Theor Appl Genet ; 91(2): 320-6, 1995 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24169780

RESUMO

Molecular markers were used to characterise sugarcane intergeneric hybrids between S. officinarum and E. arundinaceus. Very simple diagnostic tools for hybrid identification among the progeny were derived from isozyme electrophoresis and a sequence-tagged PCR. Two enzyme systems (GOT and MDH B) and PCR amplification revealing spacer-size variation in the 5s-rDNA cluster were found most convenient. Specific characterisation of the two genomic components was possible using RFLP and in situ hybridisation. The strong molecular differentiation between S. officinarum and E. arundinaceus allows the identification of numerous Erianthus-specific RFLP bands in the hybrids. Genomic DNA in situ hybridisation allows for the differentiation of the chromosomes contributed by S. officinarum and E. arundinaceus in chromosome preparations of the hybrids. In situ hybridisation with the 18s-5.8s-25s rDNA probe highlights the basic chromosome numbers in the two parental species. The potential of these techniques to monitor the Erianthus genome during the introgression process is discussed.

18.
Genome ; 37(2): 222-30, 1994 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18470072

RESUMO

Modern sugarcane varieties are complex aneuploids and typically have chromosome numbers in the 100-125 range with about 5-10% of them contributed by wild relatives, mainly Saccharum spontaneum, and the rest by S. officinarum. This particular genomic constitution was found favorable for mapping the S. spontaneum genome, using maize as a diploid reference for comparison. We conducted an analysis of 32 individuals derived from the selfing of variety SP 701006 using four isozymes and 53 maize probes which covered the whole maize genome. A total of 348 segregating bands were generated. Highly significant cosegregations enabled us to place 94 markers into 25 cosegregation groups. Eighteen of these groups involved S. spontaneum specific markers and might therefore mark S. spontaneum chromosomes in segregation. On the basis of probes in common, the 25 cosegregation groups could be assembled into eight tentative linkage groups, of which seven describe S. spontaneum chromosomes. A large degree of synteny between sugarcane and maize could be inferred, with a much lower rate of recombination in sugarcane.

19.
Theor Appl Genet ; 106(6): 1102-6, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12671759

RESUMO

A bacterial artificial chromosome (BAC) library for banana was constructed from leaves of the wild diploid 'Calcutta 4' clone (Musa acuminata subsp. Burmannicoides 2n = 2 x = 22). 'Calcutta 4' is widely used in breeding programs for its resistance to the current major disease of banana and is being used to build a genetic reference map of banana. As banana leaves are particularly rich in polyphenols and polysaccharides a protocol was adapted to isolate intact nuclei and high-molecular-weight (HMW) DNA. A total of 55,152 clones with an average insert size of 100 kb were picked. The frequency of BAC clones carrying inserts derived from chloroplast and mitochondrial DNA was estimated to be 1.5%. The coverage of the library is equivalent to 9.0-times the haploid genome. The BAC library was screened with 13 RFLP probes belonging to the 8 linkage groups of the consensus molecular map of banana. A total of 135 clones were identified giving an average of 10.38 clones for each locus. This BAC library will be a valuable starting tool for many of the goals of the recently emerged International Musa Genomic Consortium. One of our initial objectives will be to develop a banana physical map by BAC-FISH (fluorescent in situ hybridization) viewing the characterization of translocation break points.


Assuntos
Cromossomos Artificiais Bacterianos , Biblioteca Gênica , Musa/genética , DNA de Cloroplastos , DNA Mitocondrial
20.
Theor Appl Genet ; 92(8): 1024-30, 1996 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24166631

RESUMO

Comparative mapping within maize, sorghum and sugarcane has previously revealed the existence of syntenic regions between the crops. In the present study, mapping on the sorghum genome of a set of probes previously located on the maize and sugarcane maps allow a detailed analysis of the relationship between maize chromosomes 3 and 8 and sorghum and sugarcane homoeologous regions. Of 49 loci revealed by 46 (4 sugarcane and 42 maize) polymorphic probes in sorghum, 42 were linked and were assigned to linkage groups G (28), E (10) and I (4). On the basis of common probes, a complete co-linearity is observed between sorghum linkage group G and the two sugarcane linkage groups II and III. The comparison between the consensus sorghum/sugarcane map (G/II/III) and the maps of maize chromosomes 3 and 8 reveals a series of linkage blocks within which gene orders are conserved. These blocks are interspersed with non-homoeologous regions corresponding to the central part of the two maize chromosomes and have been reshuffled, resulting in several inversions in maize compared to sorghum and sugarcane. The results emphasize the fact that duplication will considerably complicate precise comparative mapping at the whole genome scale between maize and other Poaceae.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA