Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Bot ; 73(22): 7552-7563, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36103721

RESUMO

Microbial inoculations or 'biofertilizers' represent novel contributions to sustainable agriculture. While belowground mechanisms surrounding how biofertilizers enhance crop production are well described, their role in aboveground trait expression remains less well explored. We quantified infraspecific variation in leaf economics spectrum (LES) traits in response to 10 biofertilizer treatments in basil (Ocimum basiclicum) cultivated under hydroponic conditions. Multiple physiological (i.e. maximum photosynthesis rates (A), dark respiration (R), and leaf-level light compensation points) and morphological (i.e. leaf mass per area (LMA) and leaf thickness) traits varied significantly across microbial treatments. Following treatments, basil plants differentiated from one another along an infraspecific LES, with certain plants expressing more resource-acquiring LES trait values (i.e. high A, R, leaf N, and low LMA), versus others that expressed the opposite suite of resource-conserving LES trait values. Infraspecific trait covariation largely matched LES patterns observed among plants globally. Bivariate and multivariate trait analyses further revealed that certain treatments-namely those including closely related Bacillus and Brevibacillus species strains-increased leaf resource capture traits such as A and leaf N. Biofertilizers influence plant performance through a role in moderating infraspecific leaf trait variation, thereby suggesting aboveground leaf traits may be used to diagnose optimal biofertilizer formulations in basil and other crops.


Assuntos
Folhas de Planta
2.
Appl Environ Microbiol ; 85(19)2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31350315

RESUMO

A collection of bacterial endophytes isolated from stem tissues of plants growing in soils highly contaminated with petroleum hydrocarbons were screened for plant growth-promoting capabilities. Twenty-seven endophytic isolates significantly improved the growth of Arabidopsis thaliana plants in comparison to that of uninoculated control plants. The five most beneficial isolates, one strain each of Curtobacterium herbarum, Paenibacillus taichungensis, and Rhizobium selenitireducens and two strains of Plantibacter flavus were further examined for growth promotion in Arabidopsis, lettuce, basil, and bok choy plants. Host-specific plant growth promotion was observed when plants were inoculated with the five bacterial strains. P. flavus strain M251 increased the total biomass and total root length of Arabidopsis plants by 4.7 and 5.8 times, respectively, over that of control plants and improved lettuce and basil root growth, while P. flavus strain M259 promoted Arabidopsis shoot and root growth, lettuce and basil root growth, and bok choy shoot growth. A genome comparison between P. flavus strains M251 and M259 showed that both genomes contain up to 70 actinobacterial putative plant-associated genes and genes involved in known plant-beneficial pathways, such as those for auxin and cytokinin biosynthesis and 1-aminocyclopropane-1-carboxylate deaminase production. This study provides evidence of direct plant growth promotion by Plantibacter flavusIMPORTANCE The discovery of new plant growth-promoting bacteria is necessary for the continued development of biofertilizers, which are environmentally friendly and cost-efficient alternatives to conventional chemical fertilizers. Biofertilizer effects on plant growth can be inconsistent due to the complexity of plant-microbe interactions, as the same bacteria can be beneficial to the growth of some plant species and neutral or detrimental to others. We examined a set of bacterial endophytes isolated from plants growing in a unique petroleum-contaminated environment to discover plant growth-promoting bacteria. We show that strains of Plantibacter flavus exhibit strain-specific plant growth-promoting effects on four different plant species.


Assuntos
Arabidopsis/microbiologia , Endófitos/fisiologia , Interações entre Hospedeiro e Microrganismos , Lactuca/microbiologia , Ocimum basilicum/microbiologia , Actinobacteria/fisiologia , Arabidopsis/crescimento & desenvolvimento , Especificidade de Hospedeiro , Lactuca/crescimento & desenvolvimento , Ocimum basilicum/crescimento & desenvolvimento , Paenibacillus/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Rhizobium/fisiologia
3.
Genome Announc ; 6(8)2018 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-29472329

RESUMO

Bacillus sp. strain UFRGS-B20 was isolated in 2012 from Brazilian land-farming soil contaminated with petrochemical oily sludge. This strain was subjected to hydrocarbon biodegradation tests, showing degradation rates of up to 60%. Here, we present the 6.82-Mb draft genome sequence of the strain, which contains 2,178 proteins with functional assignments.

4.
PLoS One ; 9(7): e101648, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24999826

RESUMO

The activity of ammonia-oxidizing archaea (AOA) leads to the loss of nitrogen from soil, pollution of water sources and elevated emissions of greenhouse gas. To date, eight AOA genomes are available in the public databases, seven are from the group I.1a of the Thaumarchaeota and only one is from the group I.1b, isolated from hot springs. Many soils are dominated by AOA from the group I.1b, but the genomes of soil representatives of this group have not been sequenced and functionally characterized. The lack of knowledge of metabolic pathways of soil AOA presents a critical gap in understanding their role in biogeochemical cycles. Here, we describe the first complete genome of soil archaeon Candidatus Nitrososphaera evergladensis, which has been reconstructed from metagenomic sequencing of a highly enriched culture obtained from an agricultural soil. The AOA enrichment was sequenced with the high throughput next generation sequencing platforms from Pacific Biosciences and Ion Torrent. The de novo assembly of sequences resulted in one 2.95 Mb contig. Annotation of the reconstructed genome revealed many similarities of the basic metabolism with the rest of sequenced AOA. Ca. N. evergladensis belongs to the group I.1b and shares only 40% of whole-genome homology with the closest sequenced relative Ca. N. gargensis. Detailed analysis of the genome revealed coding sequences that were completely absent from the group I.1a. These unique sequences code for proteins involved in control of DNA integrity, transporters, two-component systems and versatile CRISPR defense system. Notably, genomes from the group I.1b have more gene duplications compared to the genomes from the group I.1a. We suggest that the presence of these unique genes and gene duplications may be associated with the environmental versatility of this group.


Assuntos
Amônia/metabolismo , Archaea/genética , Archaea/metabolismo , Genômica , Microbiologia do Solo , Adaptação Fisiológica/genética , Archaea/citologia , Archaea/fisiologia , Transporte Biológico/genética , Carbono/metabolismo , Ciclo do Carbono/genética , Divisão Celular/genética , Quimiotaxia/genética , Reparo do DNA/genética , Replicação do DNA/genética , Metabolismo Energético/genética , Metais Pesados/toxicidade , Anotação de Sequência Molecular , Nitrogênio/metabolismo , Oceanos e Mares , Pressão Osmótica , Oxirredução , Filogenia , Terpenos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA