Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Physiol ; 62(2): 248-261, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33475132

RESUMO

The Casparian strip (CS) constitutes a physical diffusion barrier to water and nutrients in plant roots, which is formed by the polar deposition of lignin polymer in the endodermis tissue. The precise pattern of lignin deposition is determined by the scaffolding activity of membrane-bound Casparian Strip domain proteins (CASPs), but little is known of the mechanism(s) directing this process. Here, we demonstrate that Endodermis-specific Receptor-like Kinase 1 (ERK1) and, to a lesser extent, ROP Binding Kinase1 (RBK1) are also involved in regulating CS formation, with the former playing an essential role in lignin deposition as well as in the localization of CASP1. We show that ERK1 is localized to the cytoplasm and nucleus of the endodermis and that together with the circadian clock regulator, Time for Coffee (TIC), forms part of a novel signaling pathway necessary for correct CS organization and suberization of the endodermis, with their single or combined loss of function resulting in altered root microbiome composition. In addition, we found that other mutants displaying defects in suberin deposition at the CS also display altered root exudates and microbiome composition. Thus, our work reveals a complex network of signaling factors operating within the root endodermis that establish both the CS diffusion barrier and influence the microbial composition of the rhizosphere.


Assuntos
Arabidopsis/metabolismo , Microbiota , Raízes de Plantas/metabolismo , Rizosfera , Transdução de Sinais , Proteínas de Arabidopsis/metabolismo , Proteínas Nucleares/metabolismo , Raízes de Plantas/microbiologia , Transdução de Sinais/fisiologia
2.
Proc Natl Acad Sci U S A ; 115(39): E9145-E9152, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30201727

RESUMO

Plants differ from animals in their capability to easily regenerate fertile adult individuals from terminally differentiated cells. This unique developmental plasticity is commonly observed in nature, where many species can reproduce asexually through the ectopic initiation of organogenic or embryogenic developmental programs. While organ-specific epigenetic marks are not passed on during sexual reproduction, the fate of epigenetic marks during asexual reproduction and the implications for clonal progeny remain unclear. Here we report that organ-specific epigenetic imprints in Arabidopsis thaliana can be partially maintained during asexual propagation from somatic cells in which a zygotic program is artificially induced. The altered marks are inherited even over multiple rounds of sexual reproduction, becoming fixed in hybrids and resulting in heritable molecular and physiological phenotypes that depend on the identity of the founder tissue. Consequently, clonal plants display distinct interactions with beneficial and pathogenic microorganisms. Our results demonstrate how novel phenotypic variation in plants can be unlocked through altered inheritance of epigenetic marks upon asexual propagation.


Assuntos
Arabidopsis/metabolismo , Epigênese Genética/fisiologia , Técnicas de Embriogênese Somática de Plantas , Reprodução Assexuada/fisiologia , Arabidopsis/citologia , Arabidopsis/genética
3.
Nucleic Acids Res ; 42(7): 4332-47, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24497194

RESUMO

The heterodimeric complex SPT4/SPT5 is a transcript elongation factor (TEF) that directly interacts with RNA polymerase II (RNAPII) to regulate messenger RNA synthesis in the chromatin context. We provide biochemical evidence that in Arabidopsis, SPT4 occurs in a complex with SPT5, demonstrating that the SPT4/SPT5 complex is conserved in plants. Each subunit is encoded by two genes SPT4-1/2 and SPT5-1/2. A mutant affected in the tissue-specifically expressed SPT5-1 is viable, whereas inactivation of the generally expressed SPT5-2 is homozygous lethal. RNAi-mediated downregulation of SPT4 decreases cell proliferation and causes growth reduction and developmental defects. These plants display especially auxin signalling phenotypes. Consistently, auxin-related genes, most strikingly AUX/IAA genes, are downregulated in SPT4-RNAi plants that exhibit an enhanced auxin response. In Arabidopsis nuclei, SPT5 clearly localizes to the transcriptionally active euchromatin, and essentially co-localizes with transcribing RNAPII. Typical for TEFs, SPT5 is found over the entire transcription unit of RNAPII-transcribed genes. In SPT4-RNAi plants, elevated levels of RNAPII and SPT5 are detected within transcribed regions (including those of downregulated genes), indicating transcript elongation defects in these plants. Therefore, SPT4/SPT5 acts as a TEF in Arabidopsis, regulating transcription during the elongation stage with particular impact on the expression of certain auxin-related genes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas Cromossômicas não Histona/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/farmacologia , Transcrição Gênica , Fatores de Elongação da Transcrição/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas Cromossômicas não Histona/genética , Eucromatina/química , Fatores de Elongação da Transcrição/genética
4.
Proteomics ; 14(19): 2109-14, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24733746

RESUMO

The elongation phase of the RNA polymerase II (RNAPII) transcription process is dynamic and regulated. Elongator and SUPPRESSOR OF Ty4 (SPT4)/SPT5 are transcript elongation factors that contribute to the regulation of mRNA synthesis by RNA polymerase II in the chromatin context. Recently, the Elongator complex consisting of six subunits and the SPT4/SPT5 heterodimer were isolated from Arabidopsis. Mutant plants affected in the expression of Elongator or SPT4/SPT5 share various auxin-signaling phenotypes. In line with that observation, auxin-related genes are prominent among the genes differentially expressed in these mutants. Exemplified by Elongator and SPT4/SPT5, we discuss here the role that transcript elongation factors may play in the control of plant growth and development.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , RNA Polimerase II/genética , Proteínas Repressoras/genética , Elongação da Transcrição Genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Ácidos Indolacéticos , Complexos Multiproteicos , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Proteoma , Proteômica , RNA Polimerase II/metabolismo , Proteínas Repressoras/metabolismo
5.
Nat Plants ; 7(1): 34-41, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33398155

RESUMO

Although plants are able to withstand a range of environmental conditions, spikes in ambient temperature can impact plant fertility causing reductions in seed yield and notable economic losses1,2. Therefore, understanding the precise molecular mechanisms that underpin plant fertility under environmental constraints is critical to safeguarding future food production3. Here, we identified two Argonaute-like proteins whose activities are required to sustain male fertility in maize plants under high temperatures. We found that MALE-ASSOCIATED ARGONAUTE-1 and -2 associate with temperature-induced phased secondary small RNAs in pre-meiotic anthers and are essential to controlling the activity of retrotransposons in male meiocyte initials. Biochemical and structural analyses revealed how male-associated Argonaute activity and its interaction with retrotransposon RNA targets is modulated through the dynamic phosphorylation of a set of highly conserved, surface-located serine residues. Our results demonstrate that an Argonaute-dependent, RNA-guided surveillance mechanism is critical in plants to sustain male fertility under environmentally constrained conditions, by controlling the mutagenic activity of transposons in male germ cells.


Assuntos
Elementos de DNA Transponíveis/genética , Zea mays/genética , Produção Agrícola , Elementos de DNA Transponíveis/fisiologia , Fertilidade , Resposta ao Choque Térmico , Plantas Geneticamente Modificadas , Pólen/crescimento & desenvolvimento , Pólen/fisiologia , Proteômica , Zea mays/crescimento & desenvolvimento , Zea mays/fisiologia
6.
Sci Rep ; 8(1): 4443, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29535386

RESUMO

Genome editing using CRISPR/Cas9 is considered the best instrument for genome engineering in plants. This methodology is based on the nuclease activity of Cas9 that is guided to specific genome sequences by single guide RNAs (sgRNAs) thus enabling researchers to engineer simple mutations or large chromosomal deletions. Current methodologies for targeted genome editing in plants using CRISPR/Cas9 are however largely inefficient, mostly due to low Cas9 activity, variable sgRNA efficiency and low heritability of genetic lesions. Here, we describe a newly developed strategy to enhance CRISPR/Cas9 efficiency in Arabidopsis thaliana focusing on the design of novel binary vectors (pUbiCAS9-Red and pEciCAS9-Red), the selection of highly efficient sgRNAs, and the use of direct plant regeneration from induced cell cultures. Our work demonstrates that by combining these three independent developments, heritable targeted chromosomal deletions of large gene clusters and intergenic regulatory sequences can be engineered at a high efficiency. Our results demonstrate that this improved CRISPR/Cas9 methodology can provide a fast, efficient and cost-effective tool to engineer targeted heritable chromosomal deletions, which will be instrumental for future high-throughput functional genomics studies in plants.


Assuntos
Arabidopsis/genética , Edição de Genes/economia , Deleção de Sequência , Sistemas CRISPR-Cas , Cromossomos de Plantas/genética , Família Multigênica , Plantas Geneticamente Modificadas/genética
7.
Elife ; 52016 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-27242129

RESUMO

Inducible epigenetic changes in eukaryotes are believed to enable rapid adaptation to environmental fluctuations. We have found distinct regions of the Arabidopsis genome that are susceptible to DNA (de)methylation in response to hyperosmotic stress. The stress-induced epigenetic changes are associated with conditionally heritable adaptive phenotypic stress responses. However, these stress responses are primarily transmitted to the next generation through the female lineage due to widespread DNA glycosylase activity in the male germline, and extensively reset in the absence of stress. Using the CNI1/ATL31 locus as an example, we demonstrate that epigenetically targeted sequences function as distantly-acting control elements of antisense long non-coding RNAs, which in turn regulate targeted gene expression in response to stress. Collectively, our findings reveal that plants use a highly dynamic maternal 'short-term stress memory' with which to respond to adverse external conditions. This transient memory relies on the DNA methylation machinery and associated transcriptional changes to extend the phenotypic plasticity accessible to the immediate offspring.


Assuntos
Arabidopsis/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Padrões de Herança , Pressão Osmótica , Cloreto de Sódio/farmacologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Mapeamento Cromossômico , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , Metilação de DNA , Epigênese Genética , Loci Gênicos , Células Germinativas , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA