Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Trop Med Hyg ; 110(3): 491-496, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38295420

RESUMO

The threats from vector-borne pathogens transmitted by ticks place people (including deployed troops) at increased risk for infection, frequently contributing to undifferentiated febrile illness syndromes. Wild and domesticated animals are critical to the transmission cycle of many tick-borne diseases. Livestock can be infected by ticks, and serve as hosts to tick-borne diseases such as rickettsiosis. Thus, it is necessary to identify the tick species and determine their potential to transmit pathogens. A total of 1,493 adult ticks from three genera-Amblyomma, Hyalomma, and Rhipicephalus-were identified using available morphological keys and were pooled (n = 541) by sex and species. Rickettsia species were detected in 308 of 541 (56.9%) pools by genus-specific quantitative polymerase chain reaction assay (Rick17b). Furthermore, sequencing of the outer membrane protein A and B genes (ompA and ompB) of random samples of Rickettsia-positive samples led to the identification of Rickettsia aeschlimannii and Rickettsia africae with most R. africae DNA (80.2%) detected in pools of Amblyomma variegatum. We report the first molecular detection and identification of the rickettsial pathogens R. africae and R. aeschlimannii in ticks from Ghana. Our findings suggest there is a need to use control measures to prevent infections from occurring among human populations in endemic areas in Ghana. This study underscores the importance of determining which vector-borne pathogens are in circulation in Ghana. Further clinical and prevalence studies are needed to understand more comprehensively the clinical impact of these rickettsial pathogens contributing to human disease and morbidity in Ghana.


Assuntos
Ixodidae , Rickettsia , Doenças Transmitidas por Carrapatos , Carrapatos , Animais , Adulto , Humanos , Carrapatos/microbiologia , Gana/epidemiologia , Rickettsia/genética , Doenças Transmitidas por Carrapatos/microbiologia
2.
BMC Public Health ; 12: 957, 2012 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-23137234

RESUMO

BACKGROUND: Influenza A viruses that cause highly pathogenic avian influenza (HPAI) also infect humans. In many developing countries such as Ghana, poultry and humans live in close proximity in both the general and military populations, increasing risk for the spread of HPAI from birds to humans. Respiratory infections such as influenza are especially prone to rapid spread among military populations living in close quarters such as barracks making this a key population for targeted avian influenza surveillance and public health education. METHOD: Twelve military barracks situated in the coastal, tropical rain forest and northern savannah belts of the country were visited and the troops and their families educated on pandemic avian influenza. Attendants at each site was obtained from the attendance sheet provided for registration. The seminars focused on zoonotic diseases, influenza surveillance, pathogenesis of avian influenza, prevention of emerging infections and biosecurity. To help direct public health policies, a questionnaire was used to collect information on animal populations and handling practices from 102 households in the military barracks. Cloacal and tracheal samples were taken from 680 domestic and domesticated wild birds and analysed for influenza A using molecular methods for virus detection. RESULTS: Of the 1028 participants that took part in the seminars, 668 (65%) showed good knowledge of pandemic avian influenza and the risks associated with its infection. Even though no evidence of the presence of avian influenza (AI) infection was found in the 680 domestic and wild birds sampled, biosecurity in the households surveyed was very poor. CONCLUSION: Active surveillance revealed that there was no AI circulation in the military barracks in April 2011. Though participants demonstrated good knowledge of pandemic avian influenza, biosecurity practices were minimal. Sustained educational programs are needed to further strengthen avian influenza surveillance and prevention in military barracks.


Assuntos
Conhecimentos, Atitudes e Prática em Saúde , Vírus da Influenza A , Influenza Aviária/prevenção & controle , Influenza Humana/epidemiologia , Instalações Militares , Militares/educação , Animais , Aves , Estudos Transversais , Feminino , Gana/epidemiologia , Humanos , Vírus da Influenza A/isolamento & purificação , Influenza Aviária/epidemiologia , Influenza Humana/prevenção & controle , Masculino , Militares/psicologia , Aceitação pelo Paciente de Cuidados de Saúde/estatística & dados numéricos , Vigilância da População , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Sensibilidade e Especificidade
3.
Parasit Vectors ; 15(1): 86, 2022 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35279200

RESUMO

BACKGROUND: Ticks are important vectors of various pathogenic protozoa, bacteria and viruses that cause serious and life-threatening illnesses in humans and animals worldwide. Estimating tick-borne pathogen prevalence in tick populations is necessary to delineate how geographical differences, environmental variability and host factors influence pathogen prevalence and transmission. This study identified ticks and tick-borne pathogens in samples collected from June 2016 to December 2017 at seven sites within the Coastal, Sudan and Guinea savanna ecological zones of Ghana. METHODS: A total of 2016 ticks were collected from domestic animals including cattle, goats and dogs. Ticks were morphologically identified and analysed for pathogens such as Crimean-Congo haemorrhagic fever virus (CCHFV), Alkhurma haemorrhagic fever virus (AHFV), Rickettsia spp. and Coxiella burnetii using polymerase chain reaction assays (PCR) and sequence analysis. RESULTS: Seven species were identified, with Amblyomma variegatum (60%) most frequently found, followed by Rhipicephalus sanguineus sensu lato (21%), Rhipicephalus spp. (9%), Hyalomma truncatum (6%), Hyalomma rufipes (3%), Rhipicephalus evertsi (1%) and Rhipicephalus (Boophilus) sp. (0.1%). Out of 912 pools of ticks tested, Rickettsia spp. and Coxiella burnetii DNA was found in 45.6% and 16.7% of pools, respectively, whereas no CCHFV or AHFV RNA were detected. Co-infection of bacterial DNA was identified in 9.6% of tick pools, with no statistical difference among the ecozones studied. CONCLUSIONS: Based on these data, humans and animals in these ecological zones are likely at the highest risk of exposure to rickettsiosis, since ticks infected with Rickettsia spp. displayed the highest rates of infection and co-infection with C. burnetii, compared to other tick-borne pathogens in Ghana.


Assuntos
Rhipicephalus , Rickettsia , Animais , Animais Domésticos , Bovinos , Cães , Gana/epidemiologia , Prevalência , Rickettsia/genética
4.
Vet Med Sci ; 8(4): 1570-1577, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35451231

RESUMO

INTRODUCTION: Avian influenza viruses (AIV) cause significant economic losses to poultry farmers worldwide. These viruses have the ability to spread rapidly, infect entire poultry flocks, and can pose a threat to human health. The National Influenza Centre (NIC) at the Noguchi Memorial Institute for Medical Research in collaboration with the Ghana Armed forces (GAF) and the U.S. Naval Medical Research Unit No. 3, Ghana Detachment (NAMRU-3) performs biannual surveillance for influenza viruses among poultry at military barracks throughout Ghana. This study presents poultry surveillance data from the years 2017 to 2019. METHODOLOGY: Tracheal and cloacal swabs from sick and healthy poultry were collected from the backyards of GAF personnel living quarters and transported at 4°C to the NIC. Viral ribonucleic acid (RNA) was isolated and analyzed for the presence of influenza viruses using real-time polymerase chain reaction (PCR) assays. Viral nucleic acids extracted from influenza A-positive specimens were sequenced using universal influenza A-specific primers. RESULTS: Influenza A H9N2 virus was detected in 11 avian species out of 2000 samples tested. Phylogenetic analysis of viral haemagglutinin (HA) protein confirms the possibility of importation of viruses from North Africa and Burkina Faso. Although the detected viruses possess molecular markers of virulence and mammalian host adaptation, the HA cleavage site anlaysis confirmed low pathogenicity of the viruses. CONCLUSIONS: These findings confirm the ongoing spread of H9 viruses among poultry in Ghana. Poultry farmers need to be vigilant for sick birds and take the appropriate public health steps to limit the spread to other animals and spillover to humans.


Assuntos
Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Filogenia , Animais , Galinhas/virologia , Fazendas , Gana/epidemiologia , Vírus da Influenza A Subtipo H9N2/genética , Influenza Aviária/epidemiologia , Aves Domésticas/virologia , Proteínas Virais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA