Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
J Neurochem ; 167(1): 104-125, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37688457

RESUMO

Brain-derived neurotrophic factor (BDNF) stimulates dendrite outgrowth and synaptic plasticity by activating downstream protein kinase A (PKA) signaling. Recently, BDNF has been shown to modulate mitochondrial respiration in isolated brain mitochondria, suggesting that BDNF can modulate mitochondrial physiology. However, the molecular mechanisms by which BDNF stimulates mitochondrial function in neurons remain to be elucidated. In this study, we surmised that BDNF binds to the TrkB receptor and translocates to mitochondria to govern mitochondrial physiology in a PKA-dependent manner. Confocal microscopy and biochemical subcellular fractionation assays confirm the localization of the TrkB receptor in mitochondria. The translocation of the TrkB receptor to mitochondria was significantly enhanced upon treating primary cortical neurons with exogenous BDNF, leading to rapid PKA activation. Showing a direct role of BDNF in regulating mitochondrial structure/function, time-lapse confocal microscopy in primary cortical neurons showed that exogenous BDNF enhances mitochondrial fusion, anterograde mitochondrial trafficking, and mitochondrial content within dendrites, which led to increased basal and ATP-linked mitochondrial respiration and glycolysis as assessed by an XF24e metabolic analyzer. BDNF-mediated regulation of mitochondrial structure/function requires PKA activity as treating primary cortical neurons with a pharmacological inhibitor of PKA or transiently expressing constructs that target an inhibitor peptide of PKA (PKI) to the mitochondrion abrogated BDNF-mediated mitochondrial fusion and trafficking. Mechanistically, western/Phos-tag blots show that BDNF stimulates PKA-mediated phosphorylation of Drp1 and Miro-2 to promote mitochondrial fusion and elevate mitochondrial content in dendrites, respectively. Effects of BDNF on mitochondrial function were associated with increased resistance of neurons to oxidative stress and dendrite retraction induced by rotenone. Overall, this study revealed new mechanisms of BDNF-mediated neuroprotection, which entails enhancing mitochondrial health and function of neurons.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Proteínas Quinases Dependentes de AMP Cíclico , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Receptor trkB/metabolismo , Neurônios/metabolismo , Mitocôndrias/metabolismo , Células Cultivadas
2.
Int J Mol Sci ; 24(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36614135

RESUMO

Parkinson's Disease (PD) is a brain-degenerative disorder characterized by a progressive loss of midbrain dopamine neurons. Current standard-of-care includes oral administration of Levodopa to address motor symptoms, but this treatment is not disease-modifying. A reduction in Protein Kinase A (PKA) signaling and neurotrophic support contributes to PD pathology. We previously showed that enhancing PKA activity in the brain via intraperitoneal administration of Forskolin in Parkinsonian rats (PINK1 knockout) abrogate motor symptoms and loss of midbrain dopamine neurons. Given that intraperitoneal administration is invasive, we hypothesized that intranasal administration of Forskolin and a second nootropic agent (Noopept) could reverse PD pathology efficiently. Results show that intranasal administration of a formulation (CNS/CT-001) containing Forskolin (10 µM) and Noopept (20 nM) significantly reversed motor symptoms, loss of hind limb strength, and neurodegeneration of midbrain dopamine neurons in PINK1-KO rats and is indistinguishable from wild-type (WT) rats; therapeutic effects associated with increased PKA activity and levels of BDNF and NGF in the brain. Intranasal administration of CNS/CT-001, but not Forskolin, significantly decreased the number of α-synuclein aggregates in the cortex of PINK1-KO rats, and is indistinguishable from WT rats. Overall, we show proof of concept that intranasal administration of CNS/CT-001 is a non-invasive, disease-modifying formulation for PD.


Assuntos
Doença de Parkinson , Ratos , Animais , Administração Intranasal , Doença de Parkinson/metabolismo , Encéfalo/metabolismo , Proteínas Quinases/metabolismo
3.
Int J Mol Sci ; 23(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36362150

RESUMO

Recent advances in next-generation sequencing (NGS) technologies have opened the door to a wellspring of information regarding the composition of the gut microbiota. Leveraging NGS technology, early metagenomic studies revealed that several diseases, such as Alzheimer's disease, Parkinson's disease, autism, and myalgic encephalomyelitis, are characterized by alterations in the diversity of gut-associated microbes. More recently, interest has shifted toward understanding how these microbes impact their host, with a special emphasis on their interactions with the brain. Such interactions typically occur either systemically, through the production of small molecules in the gut that are released into circulation, or through signaling via the vagus nerves which directly connect the enteric nervous system to the central nervous system. Collectively, this system of communication is now commonly referred to as the gut-microbiota-brain axis. While equally important, little attention has focused on the causes of the alterations in the composition of gut microbiota. Although several factors can contribute, mucosal immunity plays a significant role in shaping the microbiota in both healthy individuals and in association with several diseases. The purpose of this review is to provide a brief overview of the components of mucosal immunity that impact the gut microbiota and then discuss how altered immunological conditions may shape the gut microbiota and consequently affect neuroimmune diseases, using a select group of common neuroimmune diseases as examples.


Assuntos
Sistema Nervoso Entérico , Microbioma Gastrointestinal , Doença de Parkinson , Humanos , Imunidade nas Mucosas , Microbioma Gastrointestinal/fisiologia , Sistema Nervoso Entérico/fisiologia , Encéfalo/fisiologia
4.
J Neurosci Res ; 99(9): 2134-2155, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34046942

RESUMO

Mutations in PTEN-induced kinase 1 (PINK1) lead to early onset autosomal recessive Parkinson's disease in humans. In healthy neurons, full-length PINK1 (fPINK1) is post-translationally cleaved into different lower molecular weight forms, and cleaved PINK1 (cPINK1) gets shuttled to the cytosolic compartments to support extra-mitochondrial functions. While numerous studies have exemplified the role of mitochondrially localized PINK1 in modulating mitophagy in oxidatively stressed neurons, little is known regarding the physiological role of cPINK1 in healthy neurons. We have previously shown that cPINK1, but not fPINK1, modulates the neurite outgrowth and the maintenance of dendritic arbors by activating downstream protein kinase A (PKA) signaling in healthy neurons. However, the molecular mechanisms by which cPINK1 promotes neurite outgrowth remain to be elucidated. In this report, we show that cPINK1 supports neuronal development by modulating the expression and extracellular release of brain-derived neurotrophic factor (BDNF). Consistent with this role, we observed a progressive increase in the level of endogenous cPINK1 but not fPINK1 during prenatal and postnatal development of mouse brains and during development in primary cortical neurons. In cultured primary neurons, the pharmacological activation of endogenous PINK1 leads to enhanced downstream PKA activity, subsequent activation of the PKA-modulated transcription factor cAMP response element-binding protein (CREB), increased intracellular production and extracellular release of BDNF, and enhanced activation of the BDNF receptor-TRKß. Mechanistically, cPINK1-mediated increased dendrite complexity requires the binding of extracellular BDNF to TRKß. In summary, our data support a physiological role of cPINK1 in stimulating neuronal development by activating the PKA-CREB-BDNF signaling axis in a feedforward loop.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Proteínas Quinases/metabolismo , Animais , Linhagem Celular Tumoral , Células Cultivadas , Feminino , Humanos , Masculino , Mesencéfalo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
5.
Nanomedicine ; 37: 102439, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34256063

RESUMO

Depletion of coenzyme Q (CoQ) is associated with disease, ranging from myopathy to heart failure. To induce a CoQ deficit, C2C12 myotubes were incubated with high dose simvastatin. This resulted in a concentration-dependent inhibition of cell viability. Simvastatin-induced effects were prevented by co-incubation with mevalonic acid. When myotubes were incubated with 60 µM simvastatin, mitochondrial CoQ content decreased while co-incubation with CoQ nanodisks (ND) increased mitochondrial CoQ levels and improved cell viability. Incubation of myotubes with simvastatin also led to a reduction in oxygen consumption rate (OCR). When myotubes were co-incubated with simvastatin and CoQ ND, the decline in OCR was ameliorated. The data indicate that CoQ ND represent a water soluble vehicle capable of delivering CoQ to cultured myotubes. Thus, these biocompatible nanoparticles have the potential to bypass poor CoQ oral bioavailability as a treatment option for individuals with severe CoQ deficiency syndromes and/or aging-related CoQ depletion.


Assuntos
Ataxia/tratamento farmacológico , Doenças Mitocondriais/tratamento farmacológico , Debilidade Muscular/tratamento farmacológico , Nanocompostos/química , Sinvastatina/efeitos adversos , Ubiquinona/deficiência , Ubiquinona/farmacologia , Animais , Ataxia/patologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/patologia , Humanos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Doenças Mitocondriais/patologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Debilidade Muscular/patologia , Doenças Musculares/induzido quimicamente , Doenças Musculares/tratamento farmacológico , Doenças Musculares/patologia , Consumo de Oxigênio/efeitos dos fármacos , Sinvastatina/farmacologia , Ubiquinona/química , Ubiquinona/genética
6.
Am J Physiol Cell Physiol ; 317(4): C674-C686, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31268780

RESUMO

G protein-coupled receptor kinase 2 (GRK2) is an important protein involved in ß-adrenergic receptor desensitization. In addition, studies have shown GRK2 can modulate different metabolic processes in the cell. For instance, GRK2 has been recently shown to promote mitochondrial biogenesis and increase ATP production. However, the role of GRK2 in skeletal muscle and the signaling mechanisms that regulate GRK2 remain poorly understood. Myostatin is a well-known myokine that has been shown to impair mitochondria function. Here, we have assessed the role of myostatin in regulating GRK2 and the subsequent downstream effect of myostatin regulation of GRK2 on mitochondrial respiration in skeletal muscle. Myostatin treatment promoted the loss of GRK2 protein in myoblasts and myotubes in a time- and dose-dependent manner, which we suggest was through enhanced ubiquitin-mediated protein loss, as treatment with proteasome inhibitors partially rescued myostatin-mediated loss of GRK2 protein. To evaluate the effects of GRK2 on mitochondrial respiration, we generated stable myoblast lines that overexpress GRK2. Stable overexpression of GRK2 resulted in increased mitochondrial content and enhanced mitochondrial/oxidative respiration. Interestingly, although overexpression of GRK2 was unable to prevent myostatin-mediated impairment of mitochondrial respiratory function, elevated levels of GRK2 blocked the increased autophagic flux observed following treatment with myostatin. Overall, our data suggest a novel role for GRK2 in regulating mitochondria mass and mitochondrial respiration in skeletal muscle.


Assuntos
Autofagia/efeitos dos fármacos , Quinase 2 de Receptor Acoplado a Proteína G/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mioblastos/efeitos dos fármacos , Miostatina/farmacologia , Animais , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Camundongos , Mitocôndrias/metabolismo , Células Musculares/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Miostatina/metabolismo , Receptores Adrenérgicos beta/efeitos dos fármacos , Receptores Adrenérgicos beta/metabolismo , Receptores Adrenérgicos beta 2/efeitos dos fármacos , Receptores Adrenérgicos beta 2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
7.
J Biol Chem ; 292(11): 4499-4518, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28100784

RESUMO

O-Linked N-acetylglucosamine transferase (OGT) catalyzes O-GlcNAcylation of target proteins and regulates numerous biological processes. OGT is encoded by a single gene that yields nucleocytosolic and mitochondrial isoforms. To date, the role of the mitochondrial isoform of OGT (mOGT) remains largely unknown. Using high throughput proteomics, we identified 84 candidate mitochondrial glycoproteins, of which 44 are novel. Notably, two of the candidate glycoproteins identified (cytochrome oxidase 2 (COX2) and NADH:ubiquinone oxidoreductase core subunit 4 (MT-ND4)) are encoded by mitochondrial DNA. Using siRNA in HeLa cells, we found that reducing endogenous mOGT expression leads to alterations in mitochondrial structure and function, including Drp1-dependent mitochondrial fragmentation, reduction in mitochondrial membrane potential, and a significant loss of mitochondrial content in the absence of mitochondrial ROS. These defects are associated with a compensatory increase in oxidative phosphorylation per mitochondrion. mOGT is also critical for cell survival; siRNA-mediated knockdown of endogenous mOGT protected cells against toxicity mediated by rotenone, a complex I inhibitor. Conversely, reduced expression of both nucleocytoplasmic (ncOGT) and mitochondrial (mOGT) OGT isoforms is associated with increased mitochondrial respiration and elevated glycolysis, suggesting that ncOGT is a negative regulator of cellular bioenergetics. Last, we determined that mOGT is probably involved in the glycosylation of a restricted set of mitochondrial targets. We identified four proteins implicated in mitochondrial biogenesis and metabolism regulation as candidate substrates of mOGT, including leucine-rich PPR-containing protein and mitochondrial aconitate hydratase. Our findings suggest that mOGT is catalytically active in vivo and supports mitochondrial structure, health, and survival, whereas ncOGT predominantly regulates cellular bioenergetics.


Assuntos
Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Sobrevivência Celular , Glicólise , Glicosilação , Células HeLa , Humanos , Potencial da Membrana Mitocondrial , Mitocôndrias/genética , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/genética , N-Acetilglucosaminiltransferases/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Especificidade por Substrato
8.
Biochim Biophys Acta Biomembr ; 1860(2): 586-599, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29179995

RESUMO

Cardiolipin (CL) is an anionic phospholipid at the inner mitochondrial membrane (IMM) that facilitates the formation of transient non-bilayer (non-lamellar) structures to maintain mitochondrial integrity. CL modulates mitochondrial functions including ATP synthesis. However, the biophysical mechanisms by which CL generates non-lamellar structures and the extent to which these structures contribute to ATP synthesis remain unknown. We hypothesized that CL and ATP synthase facilitate the formation of non-bilayer structures at the IMM to stimulate ATP synthesis. By using 1H NMR and 31P NMR techniques, we observed that increasing the temperature (8°C to 37°C), lowering the pH (3.0), or incubating intact mitochondria with CTII - an IMM-targeted toxin that increases the formation of immobilized non-bilayer structures - elevated the formation of non-bilayer structures to stimulate ATP synthesis. The F0 sector of the ATP synthase complex can facilitate the formation of non-bilayer structures as incubating model membranes enriched with IMM-specific phospholipids with exogenous DCCD-binding protein of the F0 sector (DCCD-BPF) elevated the formation of immobilized non-bilayer structures to a similar manner as CTII. Native PAGE assays revealed that CL, but not other anionic phospholipids, specifically binds to DCCD-BPF to promote the formation of stable lipid-protein complexes. Mechanistically, molecular docking studies identified two lipid binding sites for CL in DCCD-BPF. We propose a new model of ATP synthase regulation in which CL mediates the formation of non-bilayer structures that serve to cluster protons and ATP synthase complexes as a mechanism to enhance proton translocation to the F0 sector, and thereby increase ATP synthesis.


Assuntos
Cardiolipinas/metabolismo , Bicamadas Lipídicas/metabolismo , Membranas Mitocondriais/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Bovinos , Dicicloexilcarbodi-Imida/metabolismo , Espectroscopia de Ressonância Magnética , Mitocôndrias Cardíacas/metabolismo , Modelos Biológicos , Simulação de Acoplamento Molecular , Ligação Proteica , Prótons , Lipossomas Unilamelares/metabolismo
9.
J Neurochem ; 142(4): 545-559, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28556983

RESUMO

Mitochondrial Protein Kinase A (PKA) and PTEN-induced kinase 1 (PINK1), which is linked to Parkinson's disease, are two neuroprotective serine/threonine kinases that regulate dendrite remodeling and mitochondrial function. We have previously shown that PINK1 regulates dendrite morphology by enhancing PKA activity. Here, we show the molecular mechanisms by which PINK1 and PKA in the mitochondrion interact to regulate dendrite remodeling, mitochondrial morphology, content, and trafficking in dendrites. PINK1-deficient cortical neurons exhibit impaired mitochondrial trafficking, reduced mitochondrial content, fragmented mitochondria, and a reduction in dendrite outgrowth compared to wild-type neurons. Transient expression of wild-type, but not a PKA-binding-deficient mutant of the PKA-mitochondrial scaffold dual-specificity A Kinase Anchoring Protein 1 (D-AKAP1), restores mitochondrial trafficking, morphology, and content in dendrites of PINK1-deficient cortical neurons suggesting that recruiting PKA to the mitochondrion reverses mitochondrial pathology in dendrites induced by loss of PINK1. Mechanistically, full-length and cleaved forms of PINK1 increase the binding of the regulatory subunit ß of PKA (PKA/RIIß) to D-AKAP1 to enhance the autocatalytic-mediated phosphorylation of PKA/RIIß and PKA activity. D-AKAP1/PKA governs mitochondrial trafficking in dendrites via the Miro-2/TRAK2 complex and by increasing the phosphorylation of Miro-2. Our study identifies a new role of D-AKAP1 in regulating mitochondrial trafficking through Miro-2, and supports a model in which PINK1 and mitochondrial PKA participate in a similar neuroprotective signaling pathway to maintain dendrite connectivity.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dendritos/metabolismo , Mitocôndrias/metabolismo , Neurônios/metabolismo , Proteínas Quinases/metabolismo , Animais , Células COS , Linhagem Celular , Feminino , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/metabolismo , Doença de Parkinson/metabolismo , Transporte Proteico/fisiologia , Ubiquitina-Proteína Ligases/metabolismo
10.
J Neurophysiol ; 116(6): 2523-2540, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27605535

RESUMO

Mitochondria are major suppliers of cellular energy in neurons; however, utilization of energy from glycolysis vs. mitochondrial oxidative phosphorylation (OxPhos) in the presynaptic compartment during neurotransmission is largely unknown. Using presynaptic and postsynaptic recordings from the mouse calyx of Held, we examined the effect of acute selective pharmacological inhibition of glycolysis or mitochondrial OxPhos on multiple mechanisms regulating presynaptic function. Inhibition of glycolysis via glucose depletion and iodoacetic acid (1 mM) treatment, but not mitochondrial OxPhos, rapidly altered transmission, resulting in highly variable, oscillating responses. At reduced temperature, this same treatment attenuated synaptic transmission because of a smaller and broader presynaptic action potential (AP) waveform. We show via experimental manipulation and ion channel modeling that the altered AP waveform results in smaller Ca2+ influx, resulting in attenuated excitatory postsynaptic currents (EPSCs). In contrast, inhibition of mitochondria-derived ATP production via extracellular pyruvate depletion and bath-applied oligomycin (1 µM) had no significant effect on Ca2+ influx and did not alter the AP waveform within the same time frame (up to 30 min), and the resultant EPSC remained unaffected. Glycolysis, but not mitochondrial OxPhos, is thus required to maintain basal synaptic transmission at the presynaptic terminal. We propose that glycolytic enzymes are closely apposed to ATP-dependent ion pumps on the presynaptic membrane. Our results indicate a novel mechanism for the effect of hypoglycemia on neurotransmission. Attenuated transmission likely results from a single presynaptic mechanism at reduced temperature: a slower, smaller AP, before and independent of any effect on synaptic vesicle release or receptor activity.


Assuntos
Potenciais de Ação/fisiologia , Glicólise/fisiologia , Terminações Pré-Sinápticas/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Antimetabólitos/farmacologia , Tronco Encefálico/citologia , Células Cultivadas , Córtex Cerebral/citologia , Desoxiglucose/farmacologia , Embrião de Mamíferos , Inibidores Enzimáticos/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Glucose/farmacologia , Glicólise/efeitos dos fármacos , Ácidos Indolacéticos/farmacologia , Ácido Iodoacético/farmacologia , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Neurônios/efeitos dos fármacos , Oligomicinas/farmacologia , Terminações Pré-Sinápticas/efeitos dos fármacos
11.
Int J Mol Sci ; 17(8)2016 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-27556455

RESUMO

Mutations the in human DJ-1 (hDJ-1) gene are associated with early-onset autosomal recessive forms of Parkinson's disease (PD). hDJ-1/parkinsonism associated deglycase (PARK7) is a cytoprotective multi-functional protein that contains a conserved cysteine-protease domain. Given that cysteine-proteases can act on both amide and ester substrates, we surmised that hDJ-1 possessed cysteine-mediated esterase activity. To test this hypothesis, hDJ-1 was overexpressed, purified and tested for activity towards 4-nitrophenyl acetate (pNPA) as µmol of pNPA hydrolyzed/min/mg·protein (U/mg protein). hDJ-1 showed maximum reaction velocity esterase activity (Vmax = 235.10 ± 12.00 U/mg protein), with a sigmoidal fit (S0.5 = 0.55 ± 0.040 mM) and apparent positive cooperativity (Hill coefficient of 2.05 ± 0.28). A PD-associated mutant of DJ-1 (M26I) lacked activity. Unlike its protease activity which is inactivated by reactive oxygen species (ROS), esterase activity of hDJ-1 is enhanced upon exposure to low concentrations of hydrogen peroxide (<10 µM) and plateaus at elevated concentrations (>100 µM) suggesting that its activity is resistant to oxidative stress. Esterase activity of DJ-1 requires oxidation of catalytic cysteines, as chemically protecting cysteines blocked its activity whereas an oxido-mimetic mutant of DJ-1 (C106D) exhibited robust esterase activity. Molecular docking studies suggest that C106 and L126 within its catalytic site interact with esterase substrates. Overall, our data show that hDJ-1 contains intrinsic redox-sensitive esterase activity that is abolished in a PD-associated mutant form of the hDJ-1 protein.


Assuntos
Esterases/química , Esterases/metabolismo , Doença de Parkinson/enzimologia , Esterases/genética , Humanos , Peróxido de Hidrogênio/farmacologia , Simulação de Acoplamento Molecular , Mutação , Nitrofenóis/metabolismo , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson/genética , Proteína Desglicase DJ-1/química , Proteína Desglicase DJ-1/genética , Proteína Desglicase DJ-1/metabolismo , Espécies Reativas de Oxigênio/metabolismo
12.
Rev Neurosci ; 26(3): 359-70, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25741943

RESUMO

In neurons, enhanced protein kinase A (PKA) signaling elevates synaptic plasticity, promotes neuronal development, and increases dopamine synthesis. By contrast, a decline in PKA signaling contributes to the etiology of several brain degenerative diseases, including Alzheimer's disease and Parkinson's disease, suggesting that PKA predominantly plays a neuroprotective role. A-kinase anchoring proteins (AKAPs) are large multidomain scaffold proteins that target PKA and other signaling molecules to distinct subcellular sites to strategically localize PKA signaling at dendrites, dendritic spines, cytosol, and axons. PKA can be recruited to the outer mitochondrial membrane by associating with three different AKAPs to regulate mitochondrial dynamics, structure, mitochondrial respiration, trafficking, dendrite morphology, and neuronal survival. In this review, we survey the myriad of essential neuronal functions modulated by PKA but place a special emphasis on mitochondrially localized PKA. Finally, we offer an updated overview of how loss of PKA signaling contributes to the etiology of several brain degenerative diseases.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Mitocôndrias/metabolismo , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Dendritos/metabolismo , Humanos , Transdução de Sinais
13.
J Neurochem ; 128(6): 864-77, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24151868

RESUMO

The subcellular compartmentalization of kinase activity allows for regulation of distinct cellular processes involved in cell differentiation or survival. The PTEN-induced kinase 1 (PINK1), which is linked to Parkinson's disease, is a neuroprotective kinase localized to cytosolic and mitochondrial compartments. While mitochondrial targeting of PINK1 is important for its activities regulating mitochondrial homeostasis, the physiological role of the cytosolic pool of PINK1 remains unknown. Here, we demonstrate a novel role for cytosolic PINK1 in neuronal differentiation/neurite maintenance. Over-expression of wild-type PINK1, but not a catalytically inactive form of PINK1(K219M), promoted neurite outgrowth in SH-SY5Y cells and increased dendritic lengths in primary cortical and midbrain dopaminergic neurons. To identify the subcellular pools of PINK1 involved in promoting neurite outgrowth, we transiently transfected cells with PINK1 constructs designed to target PINK1 to the outer mitochondrial membrane (OMM-PINK1) or restrict PINK1 to the cytosol (ΔN111-PINK1). Both constructs blocked cell death associated with loss of endogenous PINK1. However, transient expression of ΔN111-PINK1, but not of OMM-PINK1 or ΔN111-PINK1(K219M), promoted dendrite outgrowth in primary neurons, and rescued the decreased dendritic arborization of PINK1-deficient neurons. Mechanistically, the cytosolic pool of PINK1 regulated neurite morphology through enhanced anterograde transport of dendritic mitochondria and amplification of protein kinase A-related signaling pathways. Our data support a novel role for PINK1 in regulating dendritic morphogenesis.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dendritos/fisiologia , Mitocôndrias/metabolismo , Proteínas Quinases/metabolismo , Animais , Linhagem Celular Tumoral , Córtex Cerebral/citologia , Citosol/metabolismo , Feminino , Humanos , Masculino , Mesencéfalo/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuroblastoma , Doença de Parkinson/metabolismo , Gravidez , Cultura Primária de Células , Proteínas Quinases/genética , Transdução de Sinais/fisiologia
14.
PLoS Biol ; 9(4): e1000612, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21526220

RESUMO

Mitochondrial shape is determined by fission and fusion reactions catalyzed by large GTPases of the dynamin family, mutation of which can cause neurological dysfunction. While fission-inducing protein phosphatases have been identified, the identity of opposing kinase signaling complexes has remained elusive. We report here that in both neurons and non-neuronal cells, cAMP elevation and expression of an outer-mitochondrial membrane (OMM) targeted form of the protein kinase A (PKA) catalytic subunit reshapes mitochondria into an interconnected network. Conversely, OMM-targeting of the PKA inhibitor PKI promotes mitochondrial fragmentation upstream of neuronal death. RNAi and overexpression approaches identify mitochondria-localized A kinase anchoring protein 1 (AKAP1) as a neuroprotective and mitochondria-stabilizing factor in vitro and in vivo. According to epistasis studies with phosphorylation site-mutant dynamin-related protein 1 (Drp1), inhibition of the mitochondrial fission enzyme through a conserved PKA site is the principal mechanism by which cAMP and PKA/AKAP1 promote both mitochondrial elongation and neuronal survival. Phenocopied by a mutation that slows GTP hydrolysis, Drp1 phosphorylation inhibits the disassembly step of its catalytic cycle, accumulating large, slowly recycling Drp1 oligomers at the OMM. Unopposed fusion then promotes formation of a mitochondrial reticulum, which protects neurons from diverse insults.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Mitocôndrias/fisiologia , Neurônios/fisiologia , Animais , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Colforsina/farmacologia , AMP Cíclico/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Dinaminas/metabolismo , Hipocampo/citologia , Hipocampo/enzimologia , Homeostase , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Membranas Mitocondriais/enzimologia , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Forma das Organelas/efeitos dos fármacos , Fosforilação , Multimerização Proteica , Transporte Proteico , Ratos
15.
J Biol Phys ; 40(2): 193-216, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24522289

RESUMO

Rattlesnake venom can differ in composition and in metalloproteinase-associated activities. The molecular basis for this intra-species variation in Crotalus scutulatus scutulatus (Mojave rattlesnake) remains an enigma. To understand the molecular basis for intra-species variation of metalloproteinase-associated activities, we modeled the three-dimensional structures of four metalloproteinases based on the amino acid sequence of four variations of the proteinase domain of the C. s. scutulatus metalloproteinase gene (GP1, GP2, GP3, and GP4). For comparative purposes, we modeled the atrolysin metalloproteinases of C. atrox as well. All molecular models shared the same topology. While the atrolysin metalloproteinase molecular models contained highly conserved substrate binding sites, the Mojave rattlesnake metalloproteinases showed higher structural divergence when superimposed onto each other. The highest structural divergence among the four C. s. scutulatus molecular models was located at the northern cleft wall and the S'1-pocket of the substrate binding site, molecular regions that modulate substrate selectivity. Molecular dynamics and field potential maps for each C. s. scutulatus metalloproteinase model demonstrated that the non-hemorrhagic metalloproteinases (GP2 and GP3) contain highly basic molecular and field potential surfaces while the hemorrhagic metalloproteinases GP1 and atrolysin C showed extensive acidic field potential maps and shallow but less dynamic active site pockets. Hence, differences in the spatial arrangement of the northern cleft wall, the S'1-pocket, and the physico-chemical environment surrounding the catalytic site contribute to differences in metalloproteinase activities in the Mojave rattlesnake. Our results provide a structural basis for variation of metalloproteinase-associated activities in the rattlesnake venom of the Mojave rattlesnake.


Assuntos
Venenos de Crotalídeos/enzimologia , Crotalus , Hemorragia/induzido quimicamente , Metaloproteases/química , Metaloproteases/toxicidade , Simulação de Dinâmica Molecular , Sequência de Aminoácidos , Animais , Biocatálise , Domínio Catalítico , Metaloproteases/metabolismo , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Proteólise
16.
Mol Neurobiol ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030441

RESUMO

Brain-derived neurotrophic factor (BDNF) plays a pivotal role in neuronal development, synaptic plasticity, and overall neuronal health by binding to its receptor, tyrosine receptor kinase B (TrkB). This review delves into the intricate mechanisms through which BDNF-TrkB signaling influences mitochondrial function and potentially influences pathology in neurodegenerative diseases. This review highlights the BDNF-TrkB signaling pathway which regulates mitochondrial bioenergetics, biogenesis, and dynamics, mitochondrial processes vital for synaptic transmission and plasticity. Furthermore, we explore how the BDNF-TrkB-PKA signaling in the cytosol and in mitochondria affects mitochondrial transport and distribution and mitochondrial content, which is crucial for supporting the energy demands of synapses. The dysregulation of this signaling pathway is linked to various neurodegenerative diseases, including Alzheimer's and Parkinson's disease, which are characterized by mitochondrial dysfunction and reduced BDNF expression. By examining seminal studies that have characterized this signaling pathway in health and disease, the present review underscores the potential of enhancing BDNF-TrkB signaling to mitigate mitochondrial dysfunction in neurodegenerative diseases, offering insights into therapeutic strategies to enhance neuronal resilience and function.

17.
Int J Mol Sci ; 14(11): 22163-89, 2013 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-24217228

RESUMO

Since their discovery, Parkinsonian toxins (6-hydroxydopamine, MPP+, paraquat, and rotenone) have been widely employed as in vivo and in vitro chemical models of Parkinson's disease (PD). Alterations in mitochondrial homeostasis, protein quality control pathways, and more recently, autophagy/mitophagy have been implicated in neurotoxin models of PD. Here, we highlight the molecular mechanisms by which different PD toxins dysregulate autophagy/mitophagy and how alterations of these pathways play beneficial or detrimental roles in dopamine neurons. The convergent and divergent effects of PD toxins on mitochondrial function and autophagy/mitophagy are also discussed in this review. Furthermore, we propose new diagnostic tools and discuss how pharmacological modulators of autophagy/mitophagy can be developed as disease-modifying treatments for PD. Finally, we discuss the critical need to identify endogenous and synthetic forms of PD toxins and develop efficient health preventive programs to mitigate the risk of developing PD.


Assuntos
Mitofagia/efeitos dos fármacos , Neurotoxinas/administração & dosagem , Transtornos Parkinsonianos/patologia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Autofagia/efeitos dos fármacos , Autofagia/genética , Humanos , Intoxicação por MPTP/patologia , Metanfetamina/toxicidade , Oxidopamina/toxicidade , Paraquat/toxicidade , Transtornos Parkinsonianos/etiologia , Rotenona/toxicidade
18.
J Undergrad Neurosci Educ ; 12(1): A66-74, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24319394

RESUMO

Anatomy and physiology instructors often face the daunting task of teaching the principles of neurophysiology as part of a laboratory course with very limited resources. Teaching neurophysiology can be a difficult undertaking as sophisticated electrophysiology and data acquisition equipment is often financially out-of-reach for two-year institutions, and for many preparations, instructors need to be highly skilled in electrophysiology techniques when teaching hands-on laboratories. In the absence of appropriate laboratory tools, many undergraduate students have difficulty understanding concepts related to neurophysiology. The cricket can serve as a reliable invertebrate model to teach the basic concepts of neurophysiology in the educational laboratory. In this manuscript, we describe a series of hands-on, demonstrative, technologically simple, and affordable laboratory activities that will help undergraduate students gain an understanding of the principles of neurophysiology. By using the cerci ganglion and leg preparation, students can quantify extracellular neural activity in response to sensory stimulation, understand the principles of rate coding and somatotopy, perform electrical microstimulation to understand the threshold of sensory stimulation, and do pharmacological manipulation of neuronal activity. We describe the utility of these laboratory activities, provide a convenient protocol for quantifying extracellular recordings, and discuss feedback provided by undergraduate students with regards to the quality of the educational experience after performing the lab activities.

19.
Methods Mol Biol ; 2497: 349-362, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35771457

RESUMO

The measurement of mitochondrial function has become imperative to understand and characterize diseases characterized by bioenergetic alterations. The advancement of automation and application of high-throughput technologies has propelled our understanding of biological complexity and facilitated drug discovery. Seahorse extracellular flux (XFe) technology measures changes in dissolved oxygen and proton concentration in cell culture media, providing kinetic measurements of oxidative phosphorylation and glycolytic metabolism. ImageXpress® Nano is an automated fluorescent microscope with the ability to perform high-content, fast, and robust imaging in multi-well formats. In this chapter, we present a comprehensive protocol to multiplex the Seahorse XFe24 analyzer with the ImageXpress® Nano high content imaging microscope to provide a comprehensive yet rigorous profile of bioenergetics and its correlation to neuronal function and morphology.


Assuntos
Smegmamorpha , Animais , Metabolismo Energético , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Consumo de Oxigênio , Smegmamorpha/metabolismo
20.
Biochim Biophys Acta Biomembr ; 1864(10): 183984, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35724738

RESUMO

Doxorubicin (DOX) is an aqueous soluble anthracycline therapeutic widely used in cancer treatment. Although DOX anti-cancer activity is dose-dependent, increased dosage enhances the risk of cardiotoxicity. Despite intensive investigation, the molecular basis of this undesirable side effect has yet to be established. In addition to serving as a DNA intercalation agent, DOX is known to bind to the signature mitochondrial phospholipid, cardiolipin (CL). Consistent with this, DOX associates with aqueous soluble nanoparticles, termed nanodisks (ND), comprised solely of CL and an apolipoprotein scaffold. Fluorescence microscopy analysis revealed that DOX uptake, and targeting to the nucleus of cultured hepatocarcinoma (HepG2) or breast cancer (MCF7) cells, was unaffected by its association with CL-ND. Subsequent studies revealed that free DOX and DOX-CL-ND were equivalent in terms of growth inhibition activity in both cell lines. By contrast, in studies with H9C2 cardiomyocytes, DOX-CL-ND induced a lesser concentration-dependent decline in cell viability than free DOX. Whereas incubation of H9C2 cardiomyocytes with free DOX caused a steep decline in maximal oxygen consumption rate, DOX-CL-ND treated cells were largely unaffected. The data indicate that association of DOX with CL-ND does not diminish its cancer cell growth inhibition activity yet confers protection to cardiomyocytes from DOX-induced effects on aerobic respiration. This study illustrates that interaction with CL plays a role in DOX-induced mitochondrial dysfunction and suggests CL-ND provide a tool for investigating the mechanistic basis of DOX-induced cardiotoxicity.


Assuntos
Cardiolipinas , Cardiotoxicidade , Cardiolipinas/metabolismo , Cardiotoxicidade/etiologia , Cardiotoxicidade/metabolismo , Cardiotoxicidade/prevenção & controle , Doxorrubicina/efeitos adversos , Doxorrubicina/metabolismo , Humanos , Células MCF-7 , Mitocôndrias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA