Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Chem Phys ; 153(4): 044710, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32752687

RESUMO

We report the low-frequency Raman spectrum (ω = 10 cm-1-150 cm-1) of a wide variety of alkylammonium iodide based 2D lead halide perovskites (2D LHPs) as a function of A-site cation (MA = methylammonium and FA = formamidinium), octahedral layer thickness (n = 2-4), organic spacer chain length (butyl-, pentyl-, hexyl-), and sample temperature (T = 77 K-293 K). Using density functional theory calculations under the harmonic approximation for n = 2 BA:MAPbI, we assign several longitudinal/transverse optical phonon modes between 30 cm-1 and 100 cm-1, the eigendisplacements of which are analogous to that observed previously for octahedral twists/distortions in bulk MAPbI. Additionally, we propose an alternative assignment for low-frequency modes below this band (<30 cm-1) as zone-folded longitudinal acoustic phonons corresponding to the periodicity of the entire layered structure. We compare measured spectra to predictions of the Rytov elastic continuum model for zone-folded dispersion in layered structures. Our results are consistent across the various 2D LHPs studied herein, with energetic shifts of optical phonons corresponding to microscopic structural differences between materials and energetic shifts of acoustic phonons according to changes in the periodicity and elastic properties of the perovskite/organic subphases. This study highlights the importance of both the local atomic order and the superlattice structure on the vibrational properties of layered 2D materials.

2.
Sci Adv ; 9(33): eadg4417, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37585532

RESUMO

Layered hybrid perovskites exhibit emergent physical properties and exceptional functional performances, but the coexistence of lattice order and structural disorder severely hinders our understanding of these materials. One unsolved problem regards how the lattice dynamics are affected by the dimensional engineering of the inorganic frameworks and their interaction with the molecular moieties. Here, we address this question by using a combination of spontaneous Raman scattering, terahertz spectroscopy, and molecular dynamics simulations. This approach reveals the structural dynamics in and out of equilibrium and provides unexpected observables that differentiate single- and double-layered perovskites. While no distinct vibrational coherence is observed in double-layered perovskites, an off-resonant terahertz pulse can drive a long-lived coherent phonon mode in the single-layered system. This difference highlights the dramatic change in the lattice environment as the dimension is reduced, and the findings pave the way for ultrafast structural engineering and high-speed optical modulators based on layered perovskites.

3.
J Phys Chem Lett ; 11(20): 8565-8572, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32975424

RESUMO

Broadband emission in lead iodide 2D perovskites has been alternately attributed to self-trapped excitons (STEs) or permanent structural defects and/or impurities. Here, we investigate six different multilayered (n > 1) 2D lead iodide perovskites as a function of sample temperature from 5 to 300 K. We distinguish shallow defect-associated emission from a broad near-infrared (NIR) spectral feature, which we assign to an STE through subgap photoexcitation experiments. When we varied the thickness (n = 2, 3, 4), A-site cation (methylammonium vs formamidinium), and organic spacer (butylammonium vs hexylammonium vs phenylethylammonium), we found that the temperature dependence of broad NIR emission was strongly correlated with both the strength of electron-phonon coupling and the extent of structural deformation of the ground-state lattice, strongly supporting the assignment of this spectral feature to an STE. However, the extent to which formation of these STEs is intrinsic versus defect-assisted remains open to debate.

4.
J Phys Chem Lett ; 10(11): 2924-2930, 2019 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-31066277

RESUMO

We investigate the phase behavior of two-dimensional (C xH2 x+1NH3)2[(MA,FA)PbI3] n-1PbI4 layered perovskites near room temperature (-20 °C to +100 °C) as a function of the octahedral layer thickness ( n = 1, 2, 3, 4), alkylammonium chain length (butyl, pentyl, and hexyl), and identity of the small organic cation (methylammonium and formamidinium). Using differential scanning calorimetry and X-ray diffraction, we observe a reversible first-order phase transition corresponding to a partial melting transition of the alkylammonium chains separating the perovskite layers. The melting temperature, Tm, increases from 10 to 77.9 to 95.9 °C as the carbon chain length increases from C4 to C5 to C6, but it is insensitive to octahedral layer thickness, n. The latent heat of melting, Δ Hm, was in the range of 3-5 kJ/mol-spacer, indicating only partial disordering of the carbon chain. We discuss these findings and their implications in the context of melting in other two-dimensional molecular systems.

5.
J Phys Chem Lett ; 9(15): 4227-4232, 2018 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-29995420

RESUMO

Hybrid quantum dot (QD)/transition metal dichalcogenide (TMD) heterostructures are attractive components of next generation optoelectronic devices, which take advantage of the spectral tunability of QDs and the charge and exciton transport properties of TMDs. Here, we demonstrate tunable electronic coupling between CdSe QDs and monolayer WS2 using variable length alkanethiol ligands on the QD surface. Using femtosecond time-resolved second harmonic generation (SHG) microscopy, we show that electron transfer from photoexcited CdSe QDs to single-layer WS2 occurs on ultrafast (50 fs to 1 ps) time scales. Moreover, in the samples exhibiting the fastest charge transfer rates (≤50 fs) we observed oscillations in the time-domain signal corresponding to an acoustic phonon mode of the donor QD, which coherently modulates the SHG response of the underlying WS2 layer. These results reveal surprisingly strong electronic coupling at the QD/TMD interface and demonstrate the usefulness of time-resolved SHG for exploring ultrafast electronic-vibrational dynamics in TMD heterostructures.

6.
J Phys Chem Lett ; 7(20): 4213-4216, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27700102

RESUMO

Recent experimental and theoretical results have highlighted the surprisingly dominant role of acoustic phonons in regulating dynamic processes in nanocrystals. While it has been known for many years that acoustic phonon frequencies in nanocrystals depend on their size, strategies for tuning acoustic phonon energy at a given fixed size were not available. Here, we show that acoustic phonon frequencies in colloidal quantum dots (QDs) can be tuned through the choice of the surface ligand. Using low-frequency Raman spectroscopy, we explore the dependence of the l = 0 acoustic phonon resonance in CdSe QDs on ligand size, molecular weight, and chemical functionality. On the basis of these aggregated observations, we conclude that the primary mechanism for this effect is mass loading of the QD surface and that interactions between ligands and with the surrounding environment play a comparatively minor yet non-negligible role.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA