Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 185(13): 2265-2278.e14, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35568034

RESUMO

Breakthrough infections by SARS-CoV-2 variants become the global challenge for pandemic control. Previously, we developed the protein subunit vaccine ZF2001 based on the dimeric receptor-binding domain (RBD) of prototype SARS-CoV-2. Here, we developed a chimeric RBD-dimer vaccine approach to adapt SARS-CoV-2 variants. A prototype-Beta chimeric RBD-dimer was first designed to adapt the resistant Beta variant. Compared with its homotypic forms, the chimeric vaccine elicited broader sera neutralization of variants and conferred better protection in mice. The protection of the chimeric vaccine was further verified in macaques. This approach was generalized to develop Delta-Omicron chimeric RBD-dimer to adapt the currently prevalent variants. Again, the chimeric vaccine elicited broader sera neutralization of SARS-CoV-2 variants and conferred better protection against challenge by either Delta or Omicron SARS-CoV-2 in mice. The chimeric approach is applicable for rapid updating of immunogens, and our data supported the use of variant-adapted multivalent vaccine against circulating and emerging variants.


Assuntos
COVID-19 , Vacinas , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Camundongos , SARS-CoV-2/genética
2.
Cell ; 182(3): 722-733.e11, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32645327

RESUMO

Vaccines are urgently needed to control the ongoing pandemic COVID-19 and previously emerging MERS/SARS caused by coronavirus (CoV) infections. The CoV spike receptor-binding domain (RBD) is an attractive vaccine target but is undermined by limited immunogenicity. We describe a dimeric form of MERS-CoV RBD that overcomes this limitation. The RBD-dimer significantly increased neutralizing antibody (NAb) titers compared to conventional monomeric form and protected mice against MERS-CoV infection. Crystal structure showed RBD-dimer fully exposed dual receptor-binding motifs, the major target for NAbs. Structure-guided design further yielded a stable version of RBD-dimer as a tandem repeat single-chain (RBD-sc-dimer) which retained the vaccine potency. We generalized this strategy to design vaccines against COVID-19 and SARS, achieving 10- to 100-fold enhancement of NAb titers. RBD-sc-dimers in pilot scale production yielded high yields, supporting their scalability for further clinical development. The framework of immunogen design can be universally applied to other beta-CoV vaccines to counter emerging threats.


Assuntos
Betacoronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , Desenho Universal , Enzima de Conversão de Angiotensina 2 , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Betacoronavirus/química , COVID-19 , Vacinas contra COVID-19 , Linhagem Celular Tumoral , Chlorocebus aethiops , Infecções por Coronavirus/virologia , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Coronavírus da Síndrome Respiratória do Oriente Médio/química , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/virologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas/imunologia , Receptores Virais/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/química , SARS-CoV-2 , Células Sf9 , Organismos Livres de Patógenos Específicos , Spodoptera , Transfecção , Vacinação/métodos , Células Vero , Vacinas Virais
3.
Cell ; 177(6): 1553-1565.e16, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31104841

RESUMO

Enterovirus B (EV-B), a major proportion of the genus Enterovirus in the family Picornaviridae, is the causative agent of severe human infectious diseases. Although cellular receptors for coxsackievirus B in EV-B have been identified, receptors mediating virus entry, especially the uncoating process of echovirus and other EV-B remain obscure. Here, we found that human neonatal Fc receptor (FcRn) is the uncoating receptor for major EV-B. FcRn binds to the virus particles in the "canyon" through its FCGRT subunit. By obtaining multiple cryo-electron microscopy structures at different stages of virus entry at atomic or near-atomic resolution, we deciphered the underlying mechanisms of enterovirus attachment and uncoating. These structures revealed that different from the attachment receptor CD55, binding of FcRn to the virions induces efficient release of "pocket factor" under acidic conditions and initiates the conformational changes in viral particle, providing a structural basis for understanding the mechanisms of enterovirus entry.


Assuntos
Enterovirus Humano B/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe I/ultraestrutura , Receptores Fc/metabolismo , Receptores Fc/ultraestrutura , Capsídeo/metabolismo , Microscopia Crioeletrônica , Enterovirus , Enterovirus Humano B/patogenicidade , Infecções por Enterovirus/metabolismo , Antígenos de Histocompatibilidade Classe I/fisiologia , Humanos , Modelos Moleculares , Filogenia , Receptores Fc/fisiologia , Vírion , Internalização do Vírus
4.
Nat Immunol ; 22(8): 958-968, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34267374

RESUMO

Antibody-dependent enhancement (ADE) is an important safety concern for vaccine development against dengue virus (DENV) and its antigenically related Zika virus (ZIKV) because vaccine may prime deleterious antibodies to enhance natural infections. Cross-reactive antibodies targeting the conserved fusion loop epitope (FLE) are known as the main sources of ADE. We design ZIKV immunogens engineered to change the FLE conformation but preserve neutralizing epitopes. Single vaccination conferred sterilizing immunity against ZIKV without ADE of DENV-serotype 1-4 infections and abrogated maternal-neonatal transmission in mice. Unlike the wild-type-based vaccine inducing predominately cross-reactive ADE-prone antibodies, B cell profiling revealed that the engineered vaccines switched immunodominance to dispersed patterns without DENV enhancement. The crystal structure of the engineered immunogen showed the dimeric conformation of the envelope protein with FLE disruption. We provide vaccine candidates that will prevent both ZIKV infection and infection-/vaccination-induced DENV ADE.


Assuntos
Anticorpos Facilitadores/imunologia , Antígenos Virais/imunologia , Reações Cruzadas/imunologia , Vacinas contra Dengue/imunologia , Dengue/prevenção & controle , Zika virus/imunologia , Aedes , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Chlorocebus aethiops , Cricetinae , Vírus da Dengue/imunologia , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Receptor de Interferon alfa e beta/genética , Vacinação , Células Vero , Infecção por Zika virus/imunologia , Infecção por Zika virus/prevenção & controle
5.
Proc Natl Acad Sci U S A ; 120(52): e2314193120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38109549

RESUMO

Currently, monoclonal antibodies (MAbs) targeting the SARS-CoV-2 receptor binding domain (RBD) of spike (S) protein are classified into seven classes based on their binding epitopes. However, most of these antibodies are seriously impaired by SARS-CoV-2 Omicron and its subvariants, especially the recent BQ.1.1, XBB and its derivatives. Identification of broadly neutralizing MAbs against currently circulating variants is imperative. In this study, we identified a "breathing" cryptic epitope in the S protein, named as RBD-8. Two human MAbs, BIOLS56 and IMCAS74, were isolated recognizing this epitope with broad neutralization abilities against tested sarbecoviruses, including SARS-CoV, pangolin-origin coronaviruses, and all the SARS-CoV-2 variants tested (Omicron BA.4/BA.5, BQ.1.1, and XBB subvariants). Searching through the literature, some more RBD-8 MAbs were defined. More importantly, BIOLS56 rescues the immune-evaded antibody, RBD-5 MAb IMCAS-L4.65, by making a bispecific MAb, to neutralize BQ.1 and BQ.1.1, thereby producing an MAb to cover all the currently circulating Omicron subvariants. Structural analysis reveals that the neutralization effect of RBD-8 antibodies depends on the extent of epitope exposure, which is affected by the angle of antibody binding and the number of up-RBDs induced by angiotensin-converting enzyme 2 binding. This cryptic epitope which recognizes non- receptor binding motif (non-RBM) provides guidance for the development of universal therapeutic antibodies and vaccines against COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Vacinas contra COVID-19 , Anticorpos Monoclonais , Epitopos , Anticorpos Neutralizantes , Anticorpos Antivirais , Glicoproteína da Espícula de Coronavírus
6.
N Engl J Med ; 386(22): 2097-2111, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35507481

RESUMO

BACKGROUND: The ZF2001 vaccine, which contains a dimeric form of the receptor-binding domain of severe acute respiratory syndrome coronavirus 2 and aluminum hydroxide as an adjuvant, was shown to be safe, with an acceptable side-effect profile, and immunogenic in adults in phase 1 and 2 clinical trials. METHODS: We conducted a randomized, double-blind, placebo-controlled, phase 3 trial to investigate the efficacy and confirm the safety of ZF2001. The trial was performed at 31 clinical centers across Uzbekistan, Indonesia, Pakistan, and Ecuador; an additional center in China was included in the safety analysis only. Adult participants (≥18 years of age) were randomly assigned in a 1:1 ratio to receive a total of three 25-µg doses (30 days apart) of ZF2001 or placebo. The primary end point was the occurrence of symptomatic coronavirus disease 2019 (Covid-19), as confirmed on polymerase-chain-reaction assay, at least 7 days after receipt of the third dose. A key secondary efficacy end point was the occurrence of severe-to-critical Covid-19 (including Covid-19-related death) at least 7 days after receipt of the third dose. RESULTS: Between December 12, 2020, and December 15, 2021, a total of 28,873 participants received at least one dose of ZF2001 or placebo and were included in the safety analysis; 25,193 participants who had completed the three-dose regimen, for whom there were approximately 6 months of follow-up data, were included in the updated primary efficacy analysis that was conducted at the second data cutoff date of December 15, 2021. In the updated analysis, primary end-point cases were reported in 158 of 12,625 participants in the ZF2001 group and in 580 of 12,568 participants in the placebo group, for a vaccine efficacy of 75.7% (95% confidence interval [CI], 71.0 to 79.8). Severe-to-critical Covid-19 occurred in 6 participants in the ZF2001 group and in 43 in the placebo group, for a vaccine efficacy of 87.6% (95% CI, 70.6 to 95.7); Covid-19-related death occurred in 2 and 12 participants, respectively, for a vaccine efficacy of 86.5% (95% CI, 38.9 to 98.5). The incidence of adverse events and serious adverse events was balanced in the two groups, and there were no vaccine-related deaths. Most adverse reactions (98.5%) were of grade 1 or 2. CONCLUSIONS: In a large cohort of adults, the ZF2001 vaccine was shown to be safe and effective against symptomatic and severe-to-critical Covid-19 for at least 6 months after full vaccination. (Funded by the National Science and Technology Major Project and others; ClinicalTrials.gov number, NCT04646590.).


Assuntos
Vacinas contra COVID-19 , COVID-19 , Vacinas de Subunidades Antigênicas , Adolescente , Adulto , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Vacinas contra COVID-19/uso terapêutico , Método Duplo-Cego , Humanos , SARS-CoV-2 , Vacinação , Vacinas , Vacinas de Subunidades Antigênicas/efeitos adversos , Vacinas de Subunidades Antigênicas/uso terapêutico , Adulto Jovem
7.
PLoS Pathog ; 19(9): e1011659, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37721934

RESUMO

SARS-CoV-2 variants with severe immune evasion are a major challenge for COVID-19 prevention, especially the circulating Omicron XBB/BQ.1.1/BF.7 strains. Thus, the next-generation of broad-spectrum vaccines are urgently needed. Previously, we developed a COVID-19 protein subunit vaccine, ZF2001, based on the RBD-homodimer as the immunogen. To adapt SARS-CoV-2 variants, we developed chimeric RBD-heterodimers to induce broad immune responses. In this study, we further explored the concept of tandem RBD homotrimer and heterotrimer. Prototype SARS-CoV-2 RBD-homotrimer, prototype-Delta-BA.1 (PDO) RBD-heterotrimer and Delta-BA.2-BA.5 (DBA2BA5) RBD-heterotrimer were designed. Biochemical and cryo-EM structural characterization demonstrated total epitope exposure of the RBD-trimers. In mouse experiments, PDO and DBA2BA5 elicited broad SARS-CoV-2 neutralization. Potent protection against SARS-CoV-2 variants was observed in challenge assays and was correlated with neutralizing antibody titer. This study validated the design strategy of tandem RBD-heterotrimers as multivalent immunogens and presented a promising vaccine candidate, DBA2BA5, eliciting broad-spectrum immune responses, including against the circulating XBB/BF.7/BQ.1.1.


Assuntos
COVID-19 , Vacinas , Animais , Camundongos , SARS-CoV-2/genética , COVID-19/prevenção & controle , Anticorpos Neutralizantes , Anticorpos Antivirais
8.
J Med Virol ; 95(7): e28948, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37436839

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic posed great impacts on public health. To fight against the pandemic, robust immune responses induced by vaccination are indispensable. Previously, we developed a subunit vaccine adjuvanted by aluminum hydroxide, ZF2001, based on the dimeric tandem-repeat RBD immunogen, which has been approved for clinical use. This dimeric RBD design was also explored as an mRNA vaccine. Both showed potent immunogenicity. In this study, a DNA vaccine candidate encoding RBD-dimer was designed. The humoral and cellular immune responses induced by homologous and heterologous prime-boost approaches with DNA-RBD-dimer and ZF2001 were assessed in mice. Protection efficacy was studied by the SARS-CoV-2 challenge. We found that the DNA-RBD-dimer vaccine was robustly immunogenic. Priming with DNA-RBD-dimer followed by ZF2001 boosting induced higher levels of neutralizing antibodies than homologous vaccination with either DNA-RBD-dimer or ZF2001, elicited polyfunctional cellular immunity with a TH 1-biased polarization, and efficiently protected mice against SARS-CoV-2 infection in the lung. This study demonstrated the robust and protective immune responses induced by the DNA-RBD-dimer candidate and provided a heterologous prime-boost approach with DNA-RBD-dimer and ZF2001.


Assuntos
COVID-19 , Vacinas de DNA , Vacinas Virais , Humanos , Animais , Camundongos , Vacinas contra COVID-19 , COVID-19/prevenção & controle , SARS-CoV-2 , Vacinação , Anticorpos Neutralizantes , Imunidade Celular , Anticorpos Antivirais
9.
Int Immunol ; 34(12): 595-607, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-35778913

RESUMO

The unprecedented coronavirus disease 2019 (COVID-19) pandemic has caused a disaster for public health in the last 2 years, without any sign of an ending. Various vaccines were developed rapidly as soon as the outbreak occurred. Clinical trials demonstrated the reactogenicity, immunogenicity and protection efficacy in humans, and some of the vaccines have been approved for clinical use. However, waves of infections such as the recently circulating Omicron variant still occur. Newly emerging variants, especially the variants of concern, and waning humoral responses pose serious challenges to the control of the COVID-19 pandemic. Previously, we summarized the humoral and cellular immunity, safety profiles and protection efficacy of COVID-19 vaccines with clinical data published by 21 May 2021. In this review, we summarize and update the published clinical data of COVID-19 vaccines and candidates up to 31 December 2021.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Vacinas contra COVID-19/efeitos adversos , COVID-19/prevenção & controle , Pandemias , SARS-CoV-2 , Anticorpos Antivirais
10.
PLoS Med ; 19(5): e1003953, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35617368

RESUMO

BACKGROUND: Heterologous boost vaccination has been proposed as an option to elicit stronger and broader, or longer-lasting immunity. We assessed the safety and immunogenicity of heterologous immunization with a recombinant adenovirus type-5-vectored Coronavirus Disease 2019 (COVID-19) vaccine (Convidecia, hereafter referred to as CV) and a protein-subunit-based COVID-19 vaccine (ZF2001, hereafter referred to as ZF). METHODS AND FINDINGS: We conducted a randomized, observer-blinded, placebo-controlled trial, in which healthy adults aged 18 years or older, who have received 1 dose of Convidecia, with no history of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection, were recruited in Jiangsu, China. Sixty participants were randomly assigned (2:1) to receive either 1 dose of ZF2001 or placebo control (trivalent inactivated influenza vaccine (TIV)) administered at 28 days after priming, and received the third injection with ZF2001 at 5 months, referred to as CV/ZF/ZF (D0-D28-M5) and CV/ZF (D0-M5) regimen, respectively. Sixty participants were randomly assigned (2:1) to receive either 1 dose of ZF2001 or TIV administered at 56 days after priming, and received the third injection with ZF2001 at 6 months, referred to as CV/ZF/ZF (D0-D56-M6) and CV/ZF (D0-M6) regimen, respectively. Participants and investigators were masked to the vaccine received but not to the boosting interval. Primary endpoints were the geometric mean titer (GMT) of neutralizing antibodies against wild-type SARS-CoV-2 and 7-day solicited adverse reactions. The primary analysis was done in the intention-to-treat population. Between April 7, 2021 and May 6, 2021, 120 eligible participants were randomly assigned to receive ZF2001/ZF2001 (n = 40) or TIV/ZF2001 (n = 20) 28 days and 5 months post priming, and receive ZF2001/ZF2001 (n = 40) or TIV/ZF2001 (n = 20) 56 days and 6 months post priming. Of them, 7 participants did not receive the third injection with ZF2001. A total of 26 participants (21.7%) reported solicited adverse reactions within 7 days post boost vaccinations, and all the reported adverse reactions were mild, with 13 (32.5%) in CV/ZF/ZF (D0-D28-M5) regimen, 7 (35.0%) in CV/ZF (D0- M5) regimen, 4 (10.0%) in CV/ZF/ZF (D0-D56-M6) regimen, and 2 (10.0%) in CV/ZF (D0-M6) regimen, respectively. At 14 days post first boost, GMTs of neutralizing antibodies in recipients receiving ZF2001 at 28 days and 56 days post priming were 18.7 (95% CI 13.7 to 25.5) and 25.9 (17.0 to 39.3), respectively, with geometric mean ratios of 2.0 (1.2 to 3.5) and 3.4 (1.8 to 6.4) compared to TIV. GMTs at 14 days after second boost of neutralizing antibodies increased to 107.2 (73.7 to 155.8) in CV/ZF/ZF (D0-D28-M5) regimen and 141.2 (83.4 to 238.8) in CV/ZF/ZF (D0-D56-M6) regimen. Two-dose schedules of CV/ZF (D0-M5) and CV/ZF (D0-M6) induced antibody levels comparable with that elicited by 3-dose schedules, with GMTs of 90.5 (45.6, 179.8) and 94.1 (44.0, 200.9), respectively. Study limitations include the absence of vaccine effectiveness in a real-world setting and current lack of immune persistence data. CONCLUSIONS: Heterologous boosting with ZF2001 following primary vaccination with Convidecia is more immunogenic than a single dose of Convidecia and is not associated with safety concerns. These results support flexibility in cooperating viral vectored and recombinant protein vaccines. TRIAL REGISTRATION: Study on Heterologous Prime-boost of Recombinant COVID-19 Vaccine (Ad5 Vector) and RBD-based Protein Subunit Vaccine; ClinicalTrial.gov NCT04833101.


Assuntos
COVID-19 , Vacinas contra Influenza , Adenoviridae/genética , Adulto , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Método Duplo-Cego , Humanos , Imunogenicidade da Vacina , SARS-CoV-2 , Vacinação , Vacinas Sintéticas/efeitos adversos
11.
Int Immunol ; 33(10): 529-540, 2021 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-34491327

RESUMO

Coronavirus disease 2019 (COVID-19) has caused millions of deaths, and serious consequences to public health, economies and societies. Rapid responses in vaccine development have taken place since the isolation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the release of the viral genome sequence. By 21 May 2021, 101 vaccines were under clinical trials, and published data were available for 18 of them. Clinical study results from some vaccines indicated good immunogenicity and acceptable reactogenicity. Here, we focus on these 18 vaccines that had published clinical data to dissect the induced humoral and cellular immune responses as well as their safety profiles and protection efficacy.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/imunologia , Imunidade Celular/imunologia , Imunidade Humoral/imunologia , Animais , Humanos , Imunogenicidade da Vacina/imunologia , SARS-CoV-2/imunologia
14.
J Virol ; 93(8)2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30760569

RESUMO

Tick-borne encephalitis virus (TBEV) and louping ill virus (LIV) are members of the tick-borne flaviviruses (TBFVs) in the family Flaviviridae which cause encephalomeningitis and encephalitis in humans and other animals. Although vaccines against TBEV and LIV are available, infection rates are rising due to the low vaccination coverage. To date, no specific therapeutics have been licensed. Several neutralizing monoclonal antibodies (MAbs) show promising effectiveness in the control of TBFVs, but the underlying molecular mechanisms are yet to be characterized. Here, we determined the crystal structures of the LIV envelope (E) protein and report the comparative structural analysis of a TBFV broadly neutralizing murine MAb (MAb 4.2) in complex with either the LIV or TBEV E protein. The structures reveal that MAb 4.2 binds to the lateral ridge of domain III of the E protein (EDIII) of LIV or TBEV, an epitope also reported for other potently neutralizing MAbs against mosquito-borne flaviviruses (MBFVs), but adopts a unique binding orientation. Further structural analysis suggested that MAb 4.2 may neutralize flavivirus infection by preventing the structural rearrangement required for membrane fusion during virus entry. These findings extend our understanding of the vulnerability of TBFVs and other flaviviruses (including MBFVs) and provide an avenue for antibody-based TBFV antiviral development.IMPORTANCE Understanding the mechanism of antibody neutralization/protection against a virus is crucial for antiviral countermeasure development. Tick-borne encephalitis virus (TBEV) and louping ill virus (LIV) are tick-borne flaviviruses (TBFVs) in the family Flaviviridae They cause encephalomeningitis and encephalitis in humans and other animals. Although vaccines for both viruses are available, infection rates are rising due to low vaccination coverage. In this study, we solved the crystal structures of the LIV envelope protein (E) and a broadly neutralizing/protective TBFV MAb, MAb 4.2, in complex with E from either TBEV or LIV. Key structural features shared by TBFV E proteins were analyzed. The structures of E-antibody complexes showed that MAb 4.2 targets the lateral ridge of both the TBEV and LIV E proteins, a vulnerable site in flaviviruses for other potent neutralizing MAbs. Thus, this site represents a promising target for TBFV antiviral development. Further, these structures provide important information for understanding TBFV antigenicity.


Assuntos
Anticorpos Monoclonais Murinos/química , Anticorpos Neutralizantes/química , Anticorpos Antivirais/química , Vírus da Encefalite Transmitidos por Carrapatos/química , Epitopos/química , Proteínas do Envelope Viral/química , Cristalografia por Raios X , Vírus da Encefalite Transmitidos por Carrapatos/genética , Flavivirus/química , Domínios Proteicos
16.
J Virol ; 92(6)2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29298885

RESUMO

The recent outbreak of Zika virus (ZIKV) has emerged as a global health concern. ZIKV can persist in human semen and be transmitted by sexual contact, as well as by mosquitoes, as seen for classical arboviruses. We along with others have previously demonstrated that ZIKV infection leads to testis damage and infertility in mouse models. So far, no prophylactics or therapeutics are available; therefore, vaccine development is urgently demanded. Recombinant chimpanzee adenovirus has been explored as the preferred vaccine vector for many pathogens due to the low preexisting immunity against the vector among the human population. Here, we developed a ZIKV vaccine based on recombinant chimpanzee adenovirus type 7 (AdC7) expressing ZIKV M/E glycoproteins. A single vaccination of AdC7-M/E was sufficient to elicit potent neutralizing antibodies and protective immunity against ZIKV in both immunocompetent and immunodeficient mice. Moreover, vaccinated mice rapidly developed neutralizing antibody with high titers within 1 week postvaccination, and the elicited antiserum could cross-neutralize heterologous ZIKV strains. Additionally, ZIKV M- and E-specific T cell responses were robustly induced by AdC7-M/E. Moreover, one-dose inoculation of AdC7-M/E conferred mouse sterilizing immunity to eliminate viremia and viral burden in tissues against ZIKV challenge. Further investigations showed that vaccination with AdC7-M/E completely protected against ZIKV-induced testicular damage. These data demonstrate that AdC7-M/E is highly effective and represents a promising vaccine candidate for ZIKV control.IMPORTANCE Zika virus (ZIKV) is a pathogenic flavivirus that causes severe clinical consequences, including congenital malformations in fetuses and Guillain-Barré syndrome in adults. Vaccine development is a high priority for ZIKV control. In this study, to avoid preexisting anti-vector immunity in humans, a rare serotype chimpanzee adenovirus (AdC7) expressing the ZIKV M/E glycoproteins was used for ZIKV vaccine development. Impressively, AdC7-M/E exhibited exceptional performance as a ZIKV vaccine, as follows: (i) protective efficacy by a single vaccination, (ii) rapid development of a robust humoral response, (iii) durable immune responses, (iv) robust T cell responses, and (v) sterilizing immunity achieved by a single vaccination. These advantages of AdC7-M/E strongly support its potential application as a promising ZIKV vaccine in the clinic.


Assuntos
Adenoviridae , Doenças Testiculares/prevenção & controle , Testículo/imunologia , Vacinação , Vacinas Virais , Infecção por Zika virus/prevenção & controle , Zika virus , Adenoviridae/genética , Adenoviridae/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Chlorocebus aethiops , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Pan troglodytes , Doenças Testiculares/imunologia , Doenças Testiculares/patologia , Testículo/patologia , Testículo/virologia , Células Vero , Proteínas do Envelope Viral/imunologia , Proteínas da Matriz Viral/imunologia , Vacinas Virais/genética , Vacinas Virais/imunologia , Vacinas Virais/farmacologia , Zika virus/genética , Zika virus/imunologia , Infecção por Zika virus/genética , Infecção por Zika virus/imunologia , Infecção por Zika virus/patologia
17.
Subcell Biochem ; 88: 147-168, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29900496

RESUMO

Zika virus (ZIKV) is a re-emerged human pathogen, belonging to a super serogroup with dengue virus. Infection of ZIKV can lead to severe congenital symptoms, such as microcephaly, in newborns and Guillain-Barré syndrome in adults. To date, no prophylactics and therapeutics are available. Flavivirus envelope (E) protein represents the major target for neutralizing antibodies, while antibody response is the key correlate of protection against ZIKV infection. A panel of monoclonal antibodies (MAbs) were found to neutralize ZIKV infection and some of them exhibited strong potential as antivirals. In this chapter, we provide a brief introduction into the history and epidemics of ZIKV. Subsequently, we describe the ZIKV envelope protein and summarize the recent progresses in MAbs development against this virus. The concomitant molecular basis for these protective MAbs is also dissected. This chapter helps to comprehensively understand the interplay between ZIKV E protein and protective MAbs.


Assuntos
Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , Complexo Antígeno-Anticorpo , Proteínas do Envelope Viral , Zika virus , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , Complexo Antígeno-Anticorpo/química , Complexo Antígeno-Anticorpo/imunologia , Humanos , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/imunologia , Zika virus/química , Zika virus/imunologia
18.
Adv Exp Med Biol ; 1062: 77-87, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29845526

RESUMO

Zika virus (ZIKV), first discovered in the Zika forest in Uganda in 1947 was understudied until the recent explosive epidemic in several South American countries where it has become strongly associated with congenital birth defects leading to severe cranial malformations and neurological conditions. The increase in number of case of microcephaly in newborn children associated with ZIKV infection triggered the World Health Organization to declare the epidemic as a Public Health Emergency of International Concern in February of 2016. ZIKV is a member of the flavivirus genus and is transmitted by Aedes aegypti mosquitoes, however in the current epidemic clear evidence is emerging to suggest the virus can be sexually transmitted from human to human. The differences in epidemiology and manifestations of ZIKV infection during these outbreaks have prompted researchers to investigate mechanisms of dissemination, pathogenesis, and host immune response which contributes significantly to the control of the virus infection. The E and NS1 proteins of ZIKV are the major targets for neutralizing and protective antibodies. In this chapter, we mainly focus on recent research on the crystal structures of the ZIKV E and NS1 proteins, and their relations with virus infection and immune responses. These studies will be helpful to develop novel therapeutics and vaccines for protection and control of ZIKV infection.


Assuntos
Proteínas do Envelope Viral/química , Proteínas não Estruturais Virais/química , Infecção por Zika virus/virologia , Zika virus/metabolismo , Aedes/fisiologia , Aedes/virologia , Animais , Humanos , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Zika virus/química , Zika virus/genética , Infecção por Zika virus/imunologia , Infecção por Zika virus/transmissão
19.
PLoS Pathog ; 10(4): e1003989, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24743339

RESUMO

Modified vaccinia virus Ankara (MVA) is an attenuated poxvirus that has been engineered as a vaccine against infectious agents and cancers. Our goal is to understand how MVA modulates innate immunity in dendritic cells (DCs), which can provide insights to vaccine design. In this study, using murine bone marrow-derived dendritic cells, we assessed type I interferon (IFN) gene induction and protein secretion in response to MVA infection. We report that MVA infection elicits the production of type I IFN in murine conventional dendritic cells (cDCs), but not in plasmacytoid dendritic cells (pDCs). Transcription factors IRF3 (IFN regulatory factor 3) and IRF7, and the positive feedback loop mediated by IFNAR1 (IFN alpha/beta receptor 1), are required for the induction. MVA induction of type I IFN is fully dependent on STING (stimulator of IFN genes) and the newly discovered cytosolic DNA sensor cGAS (cyclic guanosine monophosphate-adenosine monophosphate synthase). MVA infection of cDCs triggers phosphorylation of TBK1 (Tank-binding kinase 1) and IRF3, which is abolished in the absence of cGAS and STING. Furthermore, intravenous delivery of MVA induces type I IFN in wild-type mice, but not in mice lacking STING or IRF3. Treatment of cDCs with inhibitors of endosomal and lysosomal acidification or the lysosomal enzyme Cathepsin B attenuated MVA-induced type I IFN production, indicating that lysosomal enzymatic processing of virions is important for MVA sensing. Taken together, our results demonstrate a critical role of the cGAS/STING-mediated cytosolic DNA-sensing pathway for type I IFN induction in cDCs by MVA. We present evidence that vaccinia virulence factors E3 and N1 inhibit the activation of IRF3 and the induction of IFNB gene in MVA-infected cDCs.


Assuntos
Células da Medula Óssea/metabolismo , Células Dendríticas/metabolismo , Interferon beta/metabolismo , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo , Vaccinia virus/metabolismo , Vacínia/metabolismo , Animais , Células da Medula Óssea/imunologia , Células da Medula Óssea/virologia , Células Dendríticas/imunologia , Células Dendríticas/virologia , Endossomos/genética , Endossomos/imunologia , Endossomos/metabolismo , Feminino , Imunidade Inata/genética , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/imunologia , Fator Regulador 3 de Interferon/metabolismo , Interferon beta/genética , Interferon beta/imunologia , Lisossomos/genética , Lisossomos/imunologia , Lisossomos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Camundongos , Camundongos Knockout , Nucleotidiltransferases/genética , Nucleotidiltransferases/imunologia , Fosforilação/genética , Fosforilação/imunologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/imunologia , Proteínas de Ligação a RNA/metabolismo , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/imunologia , Receptor de Interferon alfa e beta/metabolismo , Vacínia/genética , Vacínia/imunologia , Vaccinia virus/genética , Vaccinia virus/imunologia , Proteínas Virais/genética , Proteínas Virais/imunologia , Proteínas Virais/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/imunologia , Fatores de Virulência/metabolismo
20.
IUBMB Life ; 68(10): 783-91, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27604155

RESUMO

Antibody-mediated humoral immunity plays a pivotal role in flavivirus control. Neutralizing antibodies targeting viral envelope (E) protein, provide protection against flaviviruses in vivo but can also promote virus infection by antibody-dependent enhancement when antibodies are weakly neutralizing or in subneutralizing concentrations. The molecular basis for antibody-mediated virus neutralization can be revealed by structural studies of monoclonal antibodies complexed with the E protein or virion. In addition, the flavivirus non-structural protein NS1 can also induce host antibody production, and some of these antibodies can provide protection against virus challenge. In this review, we summarize the known structures of flavivirus neutralizing or protective antibodies bound to their epitopes and describe the underlying molecular mechanisms. © 2016 IUBMB Life, 68(10):783-791, 2016.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Infecções por Flavivirus/imunologia , Flavivirus/imunologia , Imunidade Adaptativa , Animais , Infecções por Flavivirus/virologia , Humanos , Modelos Moleculares , Ligação Proteica , Proteínas Virais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA