Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemistry ; 30(31): e202400548, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38536390

RESUMO

In the face of the growing energy crisis and environmental challenges, substantial efforts are now directed toward sustainable clean energy as a replacement for traditional fossil fuels. CO2 photoreduction into value-added chemicals and fuels is widely recognized as a promising approach to mitigate current energy and environmental concerns. Photocatalysts comprising single atoms (SAs) supported on two-dimensional (2D) semiconducting materials (SAs-2DSemi) have emerged as a novel frontier due to the combined merits of SA catalysts and 2D materials. In this study, we review advancements in metal SAs confined on 2DSemi substrates, categorized into four groups: (1) metal oxide-based, (2) g-C3N4-based, (3) emerging, and (4) hybridized 2DSemi, for photocatalytic CO2 conversion over the past few years. With a particular focus on highlighting the distinct advantages of SAs-2DSemi, we delve into the synthesis of state-of-the-art catalysts, their catalytic performances, and mechanistic elucidation facilitated by experimental characterizations and theoretical calculations. Following this, we outline the challenges in this field and offer perspectives on harnessing the potential of SAs-2DSemi as promising photocatalysts. This comprehensive review aims to provide valuable insights for the future development of 2D photocatalytic materials involving SAs for CO2 reduction.

2.
Angew Chem Int Ed Engl ; 62(3): e202214143, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36401588

RESUMO

Integrating a molecular catalyst with a light harvester into a photocatalyst is an effective strategy for solar light conversion. However, it is challenging to establish a crystallized framework with well-organized connections that favour charge separation and transfer. Herein, we report the heterogenization of a Salen metal complex molecular catalyst into a rigid covalent organic framework (COF) through covalent linkage with the light-harvesting unit of pyrene for photocatalytic hydrogen evolution. The chemically conjugated bonds between the two units contribute to fast photogenerated electron transfer and thereby promote the proton reduction reaction. The Salen cobalt-based COF showed the best hydrogen evolution activity (1378 µmol g-1 h-1 ), which is superior to the previously reported nonnoble metal based COF photocatalysts. This work provides a strategy to construct atom-efficient photocatalysts by the heterogenization of molecular catalysts into covalent organic frameworks.

3.
Adv Sci (Weinh) ; 10(8): e2206687, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36642842

RESUMO

CO2 cycloaddition with epoxides is a key catalytic procedure for CO2 utilization. Several metal-based catalysts with cocatalysts are developed for photo-driven CO2 cycloaddition, while facing difficulties in product purification and continuous reaction. Here, poly(ionic liquid)s are proposed as metal-free catalysts for photo-driven CO2 cycloaddition without cocatalysts. A series of poly(ionic liquid)s with donor-acceptor segments are fabricated and their photo-driven catalytic performance (conversion rate of 83.5% for glycidyl phenyl ether) outstrips (≈4.9 times) their thermal-driven catalytic performance (17.2%) at the same temperature. Mechanism studies confirm that photo-induced charge separation is promoted by the donor-acceptor segments and can accelerate the CO2 cycloaddition reaction. This work paves the way for the further use of poly(ionic liquid)s as catalysts in photo-driven CO2 cycloaddition.

4.
J Phys Chem Lett ; 12(41): 10093-10098, 2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34633198

RESUMO

A series of Yb2+-alloyed CsPb1-xYbxI3 (x = 0, 0.2, 0.4, 0.6) perovskite nanocrystals (NCs): are synthesized by a modified hot-injection method. Yb2+ alloying induced a blue shift of photoluminescence (PL) spectra. In particular, when x = 0.6, the perovskite NCs exhibit pure-red emission with PL centered at 638 nm. Furthermore, the perovskite NCs with pure-red emission exhibit enhanced air and thermal stability, compared to pure CsPbI3 NCs. The enhanced stability can be assigned to the formation Cs4PbI6-CsPbI3:Yb composites. Charge-carrier dynamics study indicates that the Cs4PbI6-CsPbI3:Yb composites exhibit ultrafast hot-carrier cooling processes, which could break the Auger reheating effect. These properties suggest the Yb2+ alloyed CsPbI3 perovskite NCs have great potential for high-performance pure-red light-emitting diodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA