RESUMO
Emissions of methane (CH4 ) and nitrous oxide (N2 O) from soils to the atmosphere can offset the benefits of carbon sequestration for climate change mitigation. While past study has suggested that both CH4 and N2 O emissions from tidal freshwater forested wetlands (TFFW) are generally low, the impacts of coastal droughts and drought-induced saltwater intrusion on CH4 and N2 O emissions remain unclear. In this study, a process-driven biogeochemistry model, Tidal Freshwater Wetland DeNitrification-DeComposition (TFW-DNDC), was applied to examine the responses of CH4 and N2 O emissions to episodic drought-induced saltwater intrusion in TFFW along the Waccamaw River and Savannah River, USA. These sites encompass landscape gradients of both surface and porewater salinity as influenced by Atlantic Ocean tides superimposed on periodic droughts. Surprisingly, CH4 and N2 O emission responsiveness to coastal droughts and drought-induced saltwater intrusion varied greatly between river systems and among local geomorphologic settings. This reflected the complexity of wetland CH4 and N2 O emissions and suggests that simple linkages to salinity may not always be relevant, as non-linear relationships dominated our simulations. Along the Savannah River, N2 O emissions in the moderate-oligohaline tidal forest site tended to increase dramatically under the drought condition, while CH4 emission decreased. For the Waccamaw River, emissions of both CH4 and N2 O in the moderate-oligohaline tidal forest site tended to decrease under the drought condition, but the capacity of the moderate-oligohaline tidal forest to serve as a carbon sink was substantially reduced due to significant declines in net primary productivity and soil organic carbon sequestration rates as salinity killed the dominant freshwater vegetation. These changes in fluxes of CH4 and N2 O reflect crucial synergistic effects of soil salinity and water level on C and N dynamics in TFFW due to drought-induced seawater intrusion.
Assuntos
Óxido Nitroso , Áreas Alagadas , Solo/química , Metano , Carbono , Florestas , Dióxido de Carbono/análiseRESUMO
This review article summarizes recent achievements in developing portable electrochemical sensing systems for the detection and/or quantification of controlled substances with potential on-site applications at the crime scene or other venues and in wastewater-based epidemiology. Electrochemical sensors employing carbon screen-printed electrodes (SPEs), including a wearable glove-based one, and aptamer-based devices, including a miniaturized aptamer-based graphene field effect transistor platform, are some exciting examples. Quite straightforward electrochemical sensing systems and methods for controlled substances have been developed using commercially available carbon SPEs and commercially available miniaturized potentiostats. They offer simplicity, ready availability, and affordability. With further development, they might become ready for deployment in forensic field investigation, especially when fast and informed decisions are to be made. Slightly modified carbon SPEs or SPE-like devices might be able to offer higher specificity and sensitivity while they can still be used on commercially available miniaturized potentiostats or lab-fabricated portable or even wearable devices. Affinity-based portable devices employing aptamers, antibodies, and molecularly imprinted polymers have been developed for more specific and sensitive detection and quantification. With further development of both hardware and software, the future of electrochemical sensors for controlled substances is bright.
Assuntos
Técnicas Biossensoriais , Grafite , Dispositivos Eletrônicos Vestíveis , Substâncias Controladas , Técnicas Eletroquímicas/métodos , Carbono , Oligonucleotídeos , Eletrodos , Técnicas Biossensoriais/métodosRESUMO
Diabetic nephropathy (DN) is one of the most common causes for end-stage renal disease without effective therapies available. NLR family, pyrin domain-containing 3 (NLRP3) inflammasome possesses a fundamental effect to facilitate the pathogenesis of DN. Unfortunately, how NLRP3 inflammasome is mediated still remains largely unclear. In the present study, an E3 ubiquitin ligase Speckle-type BTB-POZ protein (Spop) was identified as a suppressor of NLRP3 inflammasome. We first showed that Spop expression was extensively down-regulated in kidney of DN patients, which was confirmed in kidney of streptozotocin (STZ)-challenged mice and in high glucose (HG)-stimulated podocytes. Intriguingly, we showed that conditional knockout (cKO) of Spop in podocytes considerably accelerated renal dysfunction and pathological changes in the glomerulus of STZ-induced mice with DN, along with severe podocyte injury. Furthermore, Spop specific ablation in podocytes dramatically facilitated inflammatory response in glomeruli of DN mice via enhancing NLRP3 inflammasome and nuclear factor κB (NF-κB) signaling pathways, which were confirmed in HG-cultured podocytes. Notably, our findings indicated that Spop directly interacted with NLRP3. More importantly, Spop promoted NLRP3 degradation via elevating K48-linked polyubiquitination of NLRP3. Collectively, our findings disclosed a mechanisms through which Spop limited NLRP3 inflammasome under HG condition, and illustrated that Spop may be a novel therapeutic target to suppress NLRP3 inflammasome, contributing to the DN management.
Assuntos
Nefropatias Diabéticas/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas Nucleares/fisiologia , Proteínas Repressoras/fisiologia , Complexos Ubiquitina-Proteína Ligase/fisiologia , Animais , Glicemia/metabolismo , Regulação para Baixo , Células HEK293 , Humanos , Inflamação , Rim/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Proteínas Nucleares/metabolismo , Podócitos/metabolismo , Transdução de Sinais , Estreptozocina , Ubiquitina/química , Ubiquitina-Proteína Ligases/químicaRESUMO
Tidal freshwater forested wetlands (TFFW) provide critical ecosystem services including an essential habitat for a variety of wildlife species and significant carbon sinks for atmospheric carbon dioxide. However, large uncertainties remain concerning the impacts of climate change on the magnitude and variability of carbon fluxes and storage across a range of TFFW. In this study, we developed a process-driven Tidal Freshwater Wetlands DeNitrification-DeComposition model (TFW-DNDC) that has integrated new features, such as soil salinity effects on plant productivity and soil organic matter decomposition to explore carbon dynamics in the TFFW in response to drought-induced saltwater intrusion. Eight sites along the floodplains of the Waccamaw River (USA) and the Savannah River (USA) were selected to represent the TFFW transition from healthy to moderately and highly salt-impacted forests, and eventually to oligohaline marshes. The TFW-DNDC was calibrated and validated using field observed annual litterfall, stem growth, root growth, soil heterotrophic respiration, and soil organic carbon storage. Analyses indicate that plant productivity and soil carbon sequestration in TFFW could change substantially in response to increased soil pore water salinity and reduced soil water table due to drought, but in interactive ways dependent on the river simulated. These responses are variable due to nonlinear relationships between carbon cycling processes and environmental drivers. Plant productivity, plant respiration, soil organic carbon sequestration rate, and storage in the highly salt-impacted forest sites decreased significantly under drought conditions compared with normal conditions. Considering the high likelihood of healthy and moderately salt-impacted forests becoming highly salt-impacted forests under future climate change and sea-level rise, it is very likely that the TFFW will lose their capacity as carbon sinks without up-slope migration.
Assuntos
Salinidade , Áreas Alagadas , Ecossistema , Secas , Solo , Carbono , Florestas , Água DoceRESUMO
The advent of autonomous navigation, positioning, and general robotics technologies has enabled the improvement of small to miniature-sized unmanned aerial vehicles (UAVs, or 'drones') and their wide uses in engineering practice. Recent research endeavors further envision a systematic integration of aerial drones and traditional contact-based or ground-based sensors, leading to an aerialâ»ground wireless sensor network (AG-WSN), in which the UAV serves as both a gateway besides and a remote sensing platform. This paper serves two goals. First, we will review the recent development in architecture, design, and algorithms related to UAVs as a gateway and particularly illustrate its nature in realizing an opportunistic sensing network. Second, recognizing the opportunistic sensing need, we further aim to focus on achieving energy efficiency through developing an active radio frequency (RF)-based wake-up mechanism for aerialâ»ground data transmission. To prove the effectiveness of energy efficiency, several sensor wake-up solutions are physically implemented and evaluated. The results show that the RF-based wake-up mechanism can potentially save more than 98.4% of the energy that the traditional duty-cycle method would otherwise consume, and 96.8% if an infrared-receiver method is used.
RESUMO
The climate mitigation potential of tropical peatlands has gained increased attention as Southeast Asian peatlands are being deforested, drained and burned at very high rates, causing globally significant carbon dioxide (CO2) emissions to the atmosphere. We used a process-based dynamic tropical peatland model to explore peat carbon (C) dynamics of several management scenarios within the context of simulated twenty-first century climate change. Simulations of all scenarios with land use, including restoration, indicated net C losses over the twenty-first century ranging from 10 to 100 % of pre-disturbance values. Fire can be the dominant C-loss pathway, particularly in the drier climate scenario we tested. Simulated 100 years of oil palm (Elaeis guineensis) cultivation with an initial prescribed burn resulted in 2400-3000 Mg CO2 ha-1 total emissions. Simulated restoration following one 25-year oil palm rotation reduced total emissions to 440-1200 Mg CO2 ha-1, depending on climate. These results suggest that even under a very optimistic scenario of hydrological and forest restoration and the wettest climate regime, only about one third of the peat C lost to the atmosphere from 25 years of oil palm cultivation can be recovered in the following 75 years if the site is restored. Emissions from a simulated land degradation scenario were most sensitive to climate, with total emissions ranging from 230 to 10,600 Mg CO2 ha-1 over 100 years for the wettest and driest dry season scenarios, respectively. The large difference was driven by increased fire probability. Therefore, peat fire suppression is an effective management tool to maintain tropical peatland C stocks in the near term and should be a high priority for climate mitigation efforts. In total, we estimate emissions from current cleared peatlands and peatlands converted to oil palm in Southeast Asia to be 8.7 Gt CO2 over 100 years with a moderate twenty-first century climate. These emissions could be minimized by effective fire suppression and hydrological restoration.
RESUMO
Nitrogen-containing pyridine and quinoline are outstanding platforms on which excellent ionophores and sensors for metal ions can be built. Steric and stereochemical effects can be used to modulate the affinity and selectivity of such ligands toward different metal ions on the coordination chemistry front. On the signal transduction front, such effects can also be used to modulate optical responses of these ligands in metal sensing systems. In this review, steric modulation of achiral ligands and stereochemical modulation in chiral ligands, especially ionophores and sensors for zinc, copper, silver, and mercury, are examined using published structural and spectral data. Although it might be more challenging to construct chiral ligands than achiral ones, isotropic and anisotropic absorption signals from a single chiroptical fluorescent sensor provide not only detection but also differentiation of multiple analytes with high selectivity.
Assuntos
Ionóforos/química , Metais/química , Piridinas/química , Quinolinas/química , Ligantes , EstereoisomerismoRESUMO
Coordination compounds of polydentate nitro-gen ligands with metals are used extensively in research areas such as catalysis, and as models of complex active sites of enzymes in bioinorganic chemistry. Tris(2-pyridyl-meth-yl)amine (TPA) is a tripodal tetra-dentate ligand that is known to form coordination compounds with metals, including copper, iron and zinc. The related compound, tris-[(6-bromo-pyridin-2-yl)meth-yl]amine (TPABr3), C18H15Br3N4, which possesses a bromine atom on the 6-position of each of the three pyridyl moieties, is also known but has not been heavily investigated. The mol-ecular structure of TPABr3 as determined by X-ray diffraction is reported here. The TPABr3 molecule belongs to the triclinic, P space group and displays interesting intermolecular Brâ¯Br interactions that provide a stabilizing influence within the molecule.
RESUMO
Chiroptical switches have found application in the detection of a multitude of different analytes with a high level of sensitivity and in asymmetric catalysis to offer switchable stereoselectivity. A wide range of scaffolds have been employed that respond to metals, small molecules, anions and other analytes. Not only have chiroptical systems been used to detect the presence of analytes, but also other properties such as oxidation state and other physical phenomena that influence helicity and conformation of molecules and materials. Moreover, the tunable responses of many such chiroptical switches enable them to be used in the controlled production of either enantiomer or diastereomer at will in many important organic reactions from a single chiral catalyst through selective use of a low-cost inducer: Co-catalysts (guests), metal ions, counter ions or anions, redox agents or electrochemical potential, solvents, mechanical forces, temperature or electromagnetic radiation.
Assuntos
Óptica e Fotônica , Catálise , Dicroísmo Circular , Limite de Detecção , Espectrofotometria UltravioletaRESUMO
Two multimode Hg(II) sensors, L-MethBQA and L-CysBQA, were obtained by fusing methionine or S-methyl cysteine, into a bis-quinolyl amine-based chiral podand scaffold. Quinolyl groups serve as the fluorophore and possess nitrogen lone pairs capable of chelating metal ions. On exposure to Hg(2+) or Zn(2+), these sensors show signal enhancement in fluorescence. However, Cu(2+) quenches their fluorescence in 30:70 acetontrile/water. L-CysBQA complexes with Hg(2+), producing an exciton-coupled circular dichroism spectrum with the opposite sign to the one that is produced by Cu(2+) or Zn(2+) complexation. L-CysBQA binds Hg(2+) more strongly than Zn(2+) and is shown to differentiate Hg(2+) from other metal ions, such as Zn(2+), Cu(2+), Ni(2+), and Pb(2+), exceptionally well. The synergistic use of relatively soft sulfur, quinoline-based chiral ligands and chiroptically enhanced fluorescence detection results in high sensitivity and selectivity for Hg(2+).
RESUMO
Coarse woody debris (CWD) is a significant component of the forest biomass pool; hence a model is warranted to predict CWD decomposition and its role in forest carbon (C) and nutrient cycling under varying management and climatic conditions. A process-based model, CWDDAT (Coarse Woody Debris Decomposition Assessment Tool) was calibrated and validated using data from the FACE (Free Air Carbon Dioxide Enrichment) Wood Decomposition Experiment utilizing pine (Pinus taeda), aspen (Populous tremuloides) and birch (Betula papyrifera) on nine Experimental Forests (EF) covering a range of climate, hydrology, and soil conditions across the continental USA. The model predictions were evaluated against measured FACE log mass loss over 6 years. Four widely applied metrics of model performance demonstrated that the CWDDAT model can accurately predict CWD decomposition. The R2 (squared Pearson's correlation coefficient) between the simulation and measurement was 0.80 for the model calibration and 0.82 for the model validation (P<0.01). The predicted mean mass loss from all logs was 5.4% lower than the measured mass loss and 1.4% lower than the calculated loss. The model was also used to assess the decomposition of mixed pine-hardwood CWD produced by Hurricane Hugo in 1989 on the Santee Experimental Forest in South Carolina, USA. The simulation reflected rapid CWD decomposition of the forest in this subtropical setting. The predicted dissolved organic carbon (DOC) derived from the CWD decomposition and incorporated into the mineral soil averaged 1.01 g C m-2 y-1 over the 30 years. The main agents for CWD mass loss were fungi (72.0%) and termites (24.5%), the remainder was attributed to a mix of other wood decomposers. These findings demonstrate the applicability of CWDDAT for large-scale assessments of CWD dynamics, and fine-scale considerations regarding the fate of CWD carbon.
Assuntos
Biomassa , Florestas , Madeira , Minerais , Pinus taedaRESUMO
Coarse woody debris (CWD) is an important component in forests, hosting a variety of organisms that have critical roles in nutrient cycling and carbon (C) storage. We developed a process-based model using literature, field observations, and expert knowledge to assess woody debris decomposition in forests and the movement of wood C into the soil and atmosphere. The sensitivity analysis was conducted against the primary ecological drivers (wood properties and ambient conditions) used as model inputs. The analysis used eighty-nine climate datasets from North America, from tropical (14.2° N) to boreal (65.0° N) zones, with large ranges in annual mean temperature (26.5°C in tropical to -11.8°C in boreal), annual precipitation (6,143 to 181 mm), annual snowfall (0 to 612 kg m-2), and altitude (3 to 2,824 m above mean see level). The sensitivity analysis showed that CWD decomposition was strongly affected by climate, geographical location and altitude, which together regulate the activity of both microbial and invertebrate wood-decomposers. CWD decomposition rate increased with increments in temperature and precipitation, but decreased with increases in latitude and altitude. CWD decomposition was also sensitive to wood size, density, position (standing vs downed), and tree species. The sensitivity analysis showed that fungi are the most important decomposers of woody debris, accounting for over 50% mass loss in nearly all climatic zones in North America. The model includes invertebrate decomposers, focusing mostly on termites, which can have an important role in CWD decomposition in tropical and some subtropical regions. The role of termites in woody debris decomposition varied widely, between 0 and 40%, from temperate areas to tropical regions. Woody debris decomposition rates simulated for eighty-nine locations in North America were within the published range of woody debris decomposition rates for regions in northern hemisphere from 1.6° N to 68.3° N and in Australia.
Assuntos
Madeira/química , Animais , Austrália , Carbono/química , Clima , Florestas , Fungos/química , Invertebrados/química , América do Norte , Solo/química , Temperatura , Árvores/químicaRESUMO
Visual snapshots of intracellular kinase activity can be acquired with exquisite temporal control by using a light-activatable (caged) sensor, thereby providing a means to interrogate enzymatic activity at any point during the cell-division cycle. Robust protein kinase activity transpires just prior to, but not immediately after, nuclear envelope breakdown (NEB). Furthermore, kinase activity is required for the progression from prophase into metaphase. Finally, the application of selective protein kinase C (PKC) inhibitors, in combination with the caged sensor, correlates the action of the PKC beta isoform with subsequent NEB.
Assuntos
Mitose , Proteínas Quinases/metabolismo , Linhagem Celular , Inibidores de Proteínas Quinases/farmacologia , Espectrometria de FluorescênciaRESUMO
Stereochemistry plays a major role in the selectivity toward zinc ion over copper(II) of some tripodal ligands with a central piperidine scaffold, one of which acts as a fluorescent zinc sensor with nanomolar sensitivity.
Assuntos
Cobre/química , Piperidinas/química , Zinco/química , Ligantes , Conformação Molecular , Nanotecnologia , Sensibilidade e Especificidade , Espectrometria de FluorescênciaRESUMO
N,N-Bis(arylmethyl)methionine derivatives are chiral ligands whose complexes with metal ions may show molecular helicity that can be modulated by defined structural processes. It was shown previously that exciton-coupled circular dichroism (ECCD) spectral amplitude could be modulated by one-electron copper redox chemistry in copper complexes of these ligands. Here we describe the further development of novel systems that show conformational changes resulting in the inversion of exciton chirality. The phenomenon was probed in a N,N-bis(arylmethyl)methionine derivative containing quinoline/pyridine moieties and a methionine carboxylate moiety. The sign of the ECCD of the complex formed between this ligand and CoCl2 is negative, which suggests that the deprotonated carboxylate oxygen coordinates to the metal, but the sulfur atom does not. The sign of the ECCD inverts to positive upon addition of ascorbic acid, which can be turned back to negative upon further treatment with persulfate. X-ray quality crystals of three cobalt complexes and one nickel complex were obtained. The ascorbate-treated cobalt complex of the ligand and the same ligand with nickel, however, vary from the behavior expected from their X-ray crystal structures. It is clear that the solution and crystallographic structures of these complexes differ in several cases.
Assuntos
Metionina/análogos & derivados , Compostos Organometálicos/química , Dicroísmo Circular , Cobalto/química , Cristalografia por Raios X , Ligantes , Metionina/química , Modelos Moleculares , Níquel/química , Oxirredução , Espectrofotometria , Espectrofotometria Ultravioleta , EstereoisomerismoRESUMO
Protein tyrosine kinases serve as key mediators of signaling pathways, biochemical highways that control various aspects of cell behavior. Although fluorescent reporters of tyrosine kinases have been described, these species can suffer immediate phosphorylation upon exposure to the cellular milieu, thereby hindering a detailed analysis of kinase activity as a function of the cell cycle or exposure to environmental stimuli. The first example of a light-regulated tyrosine kinase reporter is described herein, which allows the investigator to control when kinase activity is sampled. In addition, the set of sensors created in this study contain different fluorophores, each with its own unique photophysical properties, thereby furnishing an array of choices that can be used in combination with other intracellular probes.
Assuntos
Luz , Proteínas Tirosina Quinases/metabolismo , Linhagem Celular , Humanos , Ressonância Magnética Nuclear Biomolecular , FosforilaçãoRESUMO
Chiral rigidified piperidine and quinuclidine analogues of tris(2-pyridylmethyl)amine (TPA) derivatives were examined for asymmetric recognition of amino compounds by cyclic voltammetry and fluorescence. A Cu(II) complex of a piperidine analogue discriminated the enantiomers of some chiral amines and amino alcohols, giving differences in electrochemical potential for diastereomeric complexes. Protonated piperidine and quinuclidine analogues were able to differentiate the two enantiomers of certain amino alcohols by fluorescence spectroscopy. The quinuclidine analogue gave a 3-fold difference in response to the two enantiomers of phenyglycinol.
RESUMO
A chelation-enhanced fluorescence method for the detection of paramagnetic copper(II) ions is developed. Two dyes with unequal metal ion binding constants are used, each giving strong fluorescence enhancement in the presence of a diamagnetic reporter ion such as cadmium(II). Upon presentation of copper(II) to a 1:1:1 mixture of the two dyes and cadmium(II), the Cd(II) is displaced from one dye to the other, resulting in quenching of one dye by the Cu(II) and enhancement of the weaker binding dye by complexation of the Cd(II). Although several criteria must be met, this method holds promise for analysis of a wide range of analytes.
Assuntos
Acetatos/química , Cobre/análise , Fluoresceínas/química , Corantes Fluorescentes/química , Xantenos/química , Técnicas Biossensoriais/métodos , Cádmio/química , Cátions Bivalentes , Cobre/química , Cinética , Espectrometria de Fluorescência/métodosRESUMO
A new chiroptical spectroscopic approach, differential circularly polarized fluorescence excitation (CPE), can be used to provide a selective method for detecting the presence of zinc ions. The approach utilizes the same instrumentation as fluorescence-detected circular dichroism and provides strong contrast in metal detection due to response to both chelation-enhanced fluorescence and circular dichroism upon metal ion binding. The observed contrast is therefore better than either of the parent spectroscopic detection methods. CPE also provides a strategy to reduce interference from background such as protein-based tryptophan fluorescence.