Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 27(2)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35056748

RESUMO

In this work, the solution conformations of seventeen 3,7-diacyl bispidines were studied by means of NMR spectroscopy including VT NMR experiments. The acyl groups included alkyl, alkenyl, aryl, hetaryl, and ferrocene moieties. The presence of syn/anti-isomers and their ratios were estimated, and some reasons explaining experimental facts were formulated. In particular, all aliphatic and heterocyclic units in the acylic R(CO) fragments led to an increased content of the syn-form in DMSO-d6 solutions. In contrast, only the anti-form was detected in DMSO-d6 and CDCl3 in the case when R = Ph, ferrocenyl, (R)-myrtenyl. In the case of a chiral compound derived from the natural terpene myrtene, a new dynamic process was found in addition to the expected inversion around the amide N-C(O) bond. Here, rotation around the CO-C=C bond in the acylic R fragment was detected, and its energy was estimated. For this compound, ΔG for amide N-C(O) inversion was found to be equal to 15.0 ± 0.2 kcal/mol, and for the rotation around the N(CO)-C2' bond, it was equal to 15.6 ± 0.3 kcal/mol. NMR analysis of the chiral bispidine-based bis-amide was conducted for the first time. Two X-ray structures are reported. For the first time, the unique syn-form was found in the crystal of an acyclic bispidine-based bis-amide. Quantum chemical calculations revealed the unexpected mechanism for amide bond inversion. It was found that the reaction does not proceed as direct N-C(O) bond inversion in the double-chair (CC) conformation but rather requires the conformational transformation into the chair-boat (CB) form first. The amide bond inversion in the latter requires less energy than in the CC form.

2.
Molecules ; 26(24)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34946622

RESUMO

A number of new chiral bispidines containing monoterpenoid fragments have been obtained. The bispidines were studied as ligands for Ni-catalyzed addition of diethylzinc to chalcones. The conditions for chromatographic analysis by HPLC-UV were developed, in which the peaks of the enantiomers of all synthesized chiral products were separated, which made it possible to determine the enantiomeric excess of the resulting mixture. It was demonstrated that bispidine-monoterpenoid conjugates can be used as the ligands for diethylzinc addition to chalcone C=C double bond but not as inducers of chirality. Besides products of ethylation, formation of products of formal hydrogenation of the chalcone C=C double bond was observed in all cases. Note, that this formation of hydrogenation products in significant amounts in the presence of such catalytic systems was found for the first time. A tentative scheme explaining the formation of all products was proposed.

3.
Phys Chem Chem Phys ; 22(44): 25450-25454, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33170195

RESUMO

The formation of trimetallic terbium-europium-gadolinium complexes was proposed as an approach to increase the sensitivity of the corresponding terbium-europium complexes for temperature measurement due to the suppression of multiphotonic emission. This approach results in over a 2-fold increase of the sensitivity of Eu-Tb carboxylate, which reached 5.3% K-1 in the physiological range.

4.
Nanomaterials (Basel) ; 9(1)2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-30641896

RESUMO

The acylation of unsymmetrical N-benzylbispidinols in aromatic solvents without an external base led to the formation of supramolecular gels, which possess different thicknesses and degrees of stability depending on the substituents in para-positions of the benzylic group as well as on the nature of the acylating agent and of the solvent used. Structural features of the native gels as well as of their dried forms were studied by complementary techniques including Fourier-transform infrared (FTIR) and attenuated total reflection (ATR) spectroscopy, atomic force microscopy (AFM), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and small-angle X-ray scattering and diffraction (SAXS). Structures of the key crystalline compounds were established by X-ray diffraction. An analysis of the obtained data allowed speculation on the crucial structural and condition factors that governed the gel formation. The most important factors were as follows: (i) absence of base, either external or internal; (ii) presence of HCl; (iii) presence of carbonyl and hydroxyl groups to allow hydrogen bonding; and (iv) presence of two (hetero)aromatic rings at both sides of the molecule. The hydrogen bonding involving amide carbonyl, hydroxyl at position 9, and, very probably, ammonium N-H⁺ and Cl- anion appears to be responsible for the formation of infinite molecular chains required for the first step of gel formation. Subsequent lateral cooperation of molecular chains into fibers occurred, presumably, due to the aromatic π-π-stacking interactions. Supercritical carbon dioxide drying of the organogels gave rise to aerogels with morphologies different from that of air-dried samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA