Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Mol Biol Rep ; 49(2): 1233-1258, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34854013

RESUMO

BACKGOUND: Bladder cancer (BCa) is a heterogeneous disease caused by the interaction between environmental and genetic risk factors. The goal of this case-control study was to evaluate the implication of a selected SNP panel in the risk of BCa development in a Tunisian cohort. We were also interested in studying the interaction between this predictive panel and environmental risk factors. METHODS: The case/control cohort was composed with 249 BCa cases and 255 controls. The designed Bladder cancer hereditary panel (BCHP) was composed of 139 selected variants. These variants were genotyped by an amplification-based targeted Next-Generation Sequencing (NGS) on the Ion Torrent Proton sequencer (Life Technologies, Ion Torrent technology). RESULTS: We have found that rs162555, rs2228000, rs10936599, rs710521, rs3752645, rs804276, rs4639, rs4881400 and rs288980 were significantly associated with decreased risk of bladder cancer. However the homozygous genotypes for VPS37C (rs7104333, A/A), MPG (rs1013358, C/C) genes or the heterozygous genotype for ARNT gene (rs1889740, rs2228099, rs2256355, rs2864873), GSTA4 (rs17614751) and APOBR/IL27 (rs17855750) were significantly associated with increased risk of bladder cancer development compared to reference group (OR 2.53, 2.34, 1.99, 2.00, 2.00, 1.47, 1.96 and 2.27 respectively). We have also found that non-smokers patients harboring heterozygous genotypes for ARNT/rs2864873 (A > G), ARNT/ rs1889740 (C > T) or GSTA4/rs17614751 (G-A) were respectively at 2.775, 3.069 and 6.608-fold increased risk of Bca development compared to non-smokers controls with wild genotypes. Moreover the ARNT CT (rs1889740), ARNT CG (rs2228099), ARNT TC (rs2864873) and GSS GA genotypes were associated with an increased risk of BCa even in absence of professional risk factors. Finally the decision-tree analysis produced a three major BCa classes. These three classes were essentially characterized by an intensity of tobacco use more than 20 pack years (PY) and the CYP1A2 (rs762551) genotype. CONCLUSIONS: The determined association between environmental factors, genetic variations and the risk of Bca development may provide additional information to urologists that may help them for clinical assessment and treatment decisions. Nevertheless, the underlying mechanisms through which these genes or SNPs affect the clinical behavior of BCas require further studies.


Assuntos
Transcriptoma/genética , Neoplasias da Bexiga Urinária/diagnóstico , Neoplasias da Bexiga Urinária/genética , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/genética , Predisposição Genética para Doença/genética , Testes Genéticos/métodos , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco , Tunísia/epidemiologia , Bexiga Urinária/patologia
2.
Herz ; 46(Suppl 1): 94-102, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31970460

RESUMO

Unexplained sudden death in the young is cardiovascular in most cases. Structural and conduction defects in cardiac-related genes can conspire to underlie sudden cardiac death. Here we report a clinical investigation and an extensive genetic assessment of a Tunisian family with sudden cardiac death in young members. In order to identify the family-genetic basis of sudden cardiac death, we performed Whole Exome Sequencing (WES), read depth copy-number-variation (CNV) screening and segregation analysis. We identify 6 ultra-rare pathogenic heterozygous variants in OBSCN, RYR2, DSC2, AKAP9, CACNA1C and RBM20 genes, and one homozygous splicing variant in TECRL gene consistent with an oligogenic model of inheritance. CNV analysis did not reveal any causative CNV consistent with the family phenotype. Overall, our results are highly suggestive for a cumulative effect of heterozygous missense variants as disease causation and to account for a greater disease severity among offspring. Our study further confirms the complexity of the inheritance of sudden cardiac death and highlights the utility of family-based WES and segregation analysis in the identification of family specific mutations within different cardiac genes pathways.


Assuntos
Morte Súbita Cardíaca , Coração , Morte Súbita Cardíaca/etiologia , Humanos , Mutação , Fenótipo
3.
J Hum Genet ; 65(4): 397-410, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31911611

RESUMO

Molecular diagnosis of rare inherited palmoplantar keratoderma (PPK) is still challenging. We investigated at the clinical and genetic level a consanguineous Tunisian family presenting an autosomal dominant atypical form of transgrediens and progrediens PPK to better characterize this ultrarare disease and to identify its molecular etiology. Whole-exome sequencing (WES), filtering strategies, and bioinformatics analysis have been achieved. Clinical investigation and follow up over 13 years of this Tunisian family with three siblings formerly diagnosed as an autosomal recessive form of Mal de Melela-like conducted us to reconsider its initial phenotype. Indeed, the three patients presented clinical features that overlap both Mal de Meleda and progressive symmetric erythrokeratoderma (PSEK). The mode of inheritance was also reconsidered, since the mother, initially classified as unaffected, exhibited a similar expression of the disease. WES analysis showed the absence of potentially functional rare variants in known PPKs or PSEK-related genes. Results revealed a novel heterozygous nonsynonymous variant in cadherin-12 gene (CDH12, NM_004061, c.1655C > A, p.Thr552Asn) in all affected family members. This variant is absent in dbSNP and in 50 in-house control exomes. In addition, in silico analysis of the mutated 3D domain structure predicted that this variant would result in cadherin-12 protein destabilization and thermal instability. Functional annotation and biological network construction data provide further supporting evidence for the potential role of CDH12 in the maintenance of skin integrity. Taken together, these results suggest that CDH12 gene is a potential candidate gene for an atypical presentation of an autosomal dominant form of transgrediens and progrediens PPK.


Assuntos
Caderinas , Transtornos Cromossômicos , Eritroceratodermia Variável , Genes Dominantes , Mutação de Sentido Incorreto , Adulto , Idoso , Proteínas Relacionadas a Caderinas , Caderinas/química , Caderinas/genética , Transtornos Cromossômicos/genética , Transtornos Cromossômicos/patologia , Simulação por Computador , Eritroceratodermia Variável/genética , Eritroceratodermia Variável/patologia , Feminino , Humanos , Masculino , Domínios Proteicos , Pele/patologia , Sequenciamento do Exoma
4.
J Transl Med ; 17(1): 212, 2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31248416

RESUMO

BACKGROUND: Lynch syndrome (LS) is a highly penetrant inherited cancer predisposition syndrome, characterized by autosomal dominant inheritance and germline mutations in DNA mismatch repair genes. Despite several genetic variations that have been identified in various populations, the penetrance is highly variable and the reasons for this have not been fully elucidated. This study investigates whether, besides pathogenic mutations, environment and low penetrance genetic risk factors may result in phenotype modification in a Tunisian LS family. PATIENTS AND METHODS: A Tunisian family with strong colorectal cancer (CRC) history that fulfill the Amsterdam I criteria for the diagnosis of Lynch syndrome was proposed for oncogenetic counseling. The index case was a man, diagnosed at the age of 33 years with CRC. He has a monozygotic twin diagnosed at the age of 35 years with crohn disease. Forty-seven years-old was the onset age of his paternal uncle withCRC. An immunohistochemical (IHC) labeling for the four proteins (MLH1, MSH2, MSH6 and PMS2) of the MisMatchRepair (MMR) system was performed for the index case. A targeted sequencing of MSH2, MLH1 and a panel of 85 DNA repair genes was performed for the index case and for his unaffected father. RESULTS: The IHC results showed a loss of MSH2 but not MLH1, MSH6 and PMS2 proteins expression. Genomic DNA screening, by targeted DNA repair genes sequencing, revealed an MSH2 pathogenic mutation (c.1552C>T; p.Q518X), confirmed by Sanger sequencing. This mutation was suspected to be a causal mutation associated to the loss of MSH2 expression and it was found in first and second degree relatives. The index case has smoking and alcohol consumption habits. Moreover, he harbors extensive genetic variations in other DNA-repair genes not shared with his unaffected father. CONCLUSION: In our investigated Tunisian family, we confirmed the LS by IHC, molecular and in silico investigations. We identified a novel pathogenic mutation described for the first time in Tunisia. These results come enriching the previously reported pathogenic mutations in LS families. Our study brings new arguments to the interpretation of MMR expression pattern and highlights new risk modifiers genes eventually implicated in CRC. Twins discordance reported in this work underscore that disease penetrance could be influenced by both genetic background and environmental factors.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose/genética , Reparo de Erro de Pareamento de DNA/genética , Doenças em Gêmeos/genética , Proteína 2 Homóloga a MutS/genética , Mutação , Adulto , Neoplasias Colorretais Hereditárias sem Polipose/patologia , Doenças em Gêmeos/patologia , Família , Predisposição Genética para Doença , Testes Genéticos , Mutação em Linhagem Germinativa , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Polimorfismo de Nucleotídeo Único , Tunísia
5.
Mol Biol Rep ; 46(4): 4185-4193, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31098807

RESUMO

Studies of X-linked pedigrees were the first to identify genes implicated in intellectual disability (ID) and autism spectrum disorder (ASD). However, some pedigrees present a huge clinical variability between the affected members. This intrafamilial heterogeneity may be due to cooccurrence of two disorders. In the present study, we describe a multiplex X-linked pedigree in which three siblings have ID, ASD and dysmorphic features but with variable severity. Through Fragile X syndrome test, we identified the full FMR1 mutation in only two males. Whole exome sequencing allowed us to identify a novel hemizygous variant (p.Gln2080_Gln2083del) in MED12 gene in two males. So, the first patient has FXS, the second has both FMR1 and MED12 mutations while the third has only the MED12 variant. MED12 mutations are implicated in several forms of X-linked ID. Family segregation and genotype-phenotype-correlation were in favor of a cooccurrence of two forms of X-linked ID. Our work provides further evidence of the involvement of MED12 in XLID. Moreover, through these results, it is noteworthy to raise awareness that intrafamilial heterogeneity in FXS multiplex families could result from the cooccurrence of multiple clinical entities involving at least two separate genetic loci. This should be taken into consideration for genetic testing and counselling in patients/families with atypical disease symptoms.


Assuntos
Síndrome do Cromossomo X Frágil/genética , Complexo Mediador/genética , Adolescente , Transtorno Autístico/genética , Família , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/metabolismo , Genes Ligados ao Cromossomo X , Estudos de Associação Genética , Variação Genética/genética , Humanos , Deficiência Intelectual/genética , Masculino , Complexo Mediador/metabolismo , Mutação , Linhagem , Fenótipo , Irmãos , Sequenciamento do Exoma
6.
BMC Med Genet ; 18(1): 70, 2017 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-28683740

RESUMO

BACKGROUND: In North African populations, G2019S mutation in LRRK2 gene, encoding for the leucine-rich repeat kinase 2, is the most prevalent mutation linked to familial and sporadic Parkinson's disease (PD). Early detection of G2019S by fast genetic testing is very important to guide PD's diagnosis and support patients and their family caregivers for better management of their life according to disease's evolution. METHODS: In our study, a genetic PD's diagnosis tool was developed for large scale genotyping using Kompetitive Allele Specific PCR (KASP) technology. We investigated G2019S's frequency in 250 Tunisian PD patients and 218 controls. RESULTS: We found that 33.6% of patients and 1.3% of controls were carriers. Demographic characteristics of patients with G2019S had no differences compared with non-carrier patients. Thereby, we could emphasize the implication of G2019S in PD without any distinctive demographic factors in the studied cohort. Sixty patients out of 250 were genotyped using Taqman assay and Sanger sequencing. The genotyping results were found to be concordant with KASP assay. CONCLUSIONS: The G2019S mutation frequency in our cohort was similar to that reported in previous studies. Comparing to Taqman assay and Sanger sequencing, KASP was shown to be a reliable, time and cost effective genotyping assay for routine G2019S screening in genetic testing laboratories.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Doença de Parkinson/genética , Adulto , Idoso , Estudos de Coortes , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Taxa de Mutação , Reação em Cadeia da Polimerase , Tunísia
8.
Front Pharmacol ; 15: 1380613, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38813106

RESUMO

Background: Chronic pain is a major socioeconomic burden in the Mediterranean region. However, we noticed an under-representation of these populations in the pharmacogenetics of pain management studies. In this context, we aimed 1) to decipher the pharmacogenetic variant landscape among Mediterranean populations compared to worldwide populations in order to identify therapeutic biomarkers for personalized pain management and 2) to better understand the biological process of pain management through in silico investigation of pharmacogenes pathways. Materials and Methods: We collected genes and variants implicated in pain response using the Prisma guidelines from literature and PharmGK database. Next, we extracted these genes from genotyping data of 829 individuals. Then, we determined the variant distribution among the studied populations using multivariate (MDS) and admixture analysis with R and STRUCTURE software. We conducted a Chi2 test to compare the interethnic frequencies of the identified variants. We used SNPinfo web server, miRdSNP database to identify miRNA-binding sites. In addition, we investigated the functions of the identified genes and variants using pathway enrichment analysis and annotation tools. Finally, we performed docking analysis to assess the impact of variations on drug interactions. Results: We identified 63 variants implicated in pain management. MDS analysis revealed that Mediterranean populations are genetically similar to Mexican populations and divergent from other populations. STRUCTURE analysis showed that Mediterranean populations are mainly composed of European ancestry. We highlighted differences in the minor allele frequencies of three variants (rs633, rs4680, and rs165728) located in the COMT gene. Moreover, variant annotation revealed ten variants with potential miRNA-binding sites. Finally, protein structure and docking analysis revealed that two missense variants (rs4680 and rs6267) induced a decrease in COMT protein activity and affinity for dopamine. Conclusion: Our findings revealed that Mediterranean populations diverge from other ethnic groups. Furthermore, we emphasize the importance of pain-related pathways and miRNAs to better implement these markers as predictors of analgesic responses in the Mediterranean region.

9.
Front Genet ; 15: 1384094, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711914

RESUMO

Hearing impairment (HI) is a prevalent neurosensory condition globally, impacting 5% of the population, with over 50% of congenital cases attributed to genetic etiologies. In Tunisia, HI underdiagnosis prevails, primarily due to limited access to comprehensive clinical tools, particularly for syndromic deafness (SD), characterized by clinical and genetic heterogeneity. This study aimed to uncover the SD spectrum through a 14-year investigation of a Tunisian cohort encompassing over 700 patients from four referral centers (2007-2021). Employing Sanger sequencing, Targeted Panel Gene Sequencing, and Whole Exome Sequencing, genetic analysis in 30 SD patients identified diagnoses such as Usher syndrome, Waardenburg syndrome, cranio-facial-hand-deafness syndrome, and H syndrome. This latter is a rare genodermatosis characterized by HI, hyperpigmentation, hypertrichosis, and systemic manifestations. A meta-analysis integrating our findings with existing data revealed that nearly 50% of Tunisian SD cases corresponded to rare inherited metabolic disorders. Distinguishing between non-syndromic and syndromic HI poses a challenge, where the age of onset and progression of features significantly impact accurate diagnoses. Despite advancements in local genetic characterization capabilities, certain ultra-rare forms of SD remain underdiagnosed. This research contributes critical insights to inform molecular diagnosis approaches for SD in Tunisia and the broader North-African region, thereby facilitating informed decision-making in clinical practice.

10.
Front Aging Neurosci ; 15: 1114810, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37342358

RESUMO

Introduction: Alzheimer's disease (AD) and Type 2 diabetes (T2D) are both age-associated diseases. Identification of shared genes could help develop early diagnosis and preventive strategies. Although genetic background plays a crucial role in these diseases, we noticed an underrepresentation tendency of North African populations in omics studies. Materials and methods: First, we conducted a comprehensive review of genes and pathways shared between T2D and AD through PubMed. Then, the function of the identified genes and variants was investigated using annotation tools including PolyPhen2, RegulomeDB, and miRdSNP. Pathways enrichment analyses were performed with g:Profiler and EnrichmentMap. Next, we analyzed variant distributions in 16 worldwide populations using PLINK2, R, and STRUCTURE software. Finally, we performed an inter-ethnic comparison based on the minor allele frequency of T2D-AD common variants. Results: A total of 59 eligible papers were included in our study. We found 231 variants and 363 genes shared between T2D and AD. Variant annotation revealed six single nucleotide polymorphisms (SNP) with a high pathogenic score, three SNPs with regulatory effects on the brain, and six SNPs with potential effects on miRNA-binding sites. The miRNAs affected were implicated in T2D, insulin signaling pathways, and AD. Moreover, replicated genes were significantly enriched in pathways related to plasma protein binding, positive regulation of amyloid fibril deposition, microglia activation, and cholesterol metabolism. Multidimensional screening performed based on the 363 shared genes showed that main North African populations are clustered together and are divergent from other worldwide populations. Interestingly, our results showed that 49 SNP associated with T2D and AD were present in North African populations. Among them, 11 variants located in DNM3, CFH, PPARG, ROHA, AGER, CLU, BDNF1, CST9, and PLCG1 genes display significant differences in risk allele frequencies between North African and other populations. Conclusion: Our study highlighted the complexity and the unique molecular architecture of North African populations regarding T2D-AD shared genes. In conclusion, we emphasize the importance of T2D-AD shared genes and ethnicity-specific investigation studies for a better understanding of the link behind these diseases and to develop accurate diagnoses using personalized genetic biomarkers.

11.
Front Genet ; 14: 1259826, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38283147

RESUMO

Introduction: Inherited mitochondrial diseases are the most common group of metabolic disorders caused by a defect in oxidative phosphorylation. They are characterized by a wide clinical and genetic spectrum and can manifest at any age. In this study, we established novel phenotype-genotype correlations between the clinical and molecular features of a cohort of Tunisian patients with mitochondrial diseases. Materials and methods: Whole-exome sequencing was performed on five Tunisian patients with suspected mitochondrial diseases. Then, a combination of filtering and bioinformatics prediction tools was utilized to assess the pathogenicity of genetic variations. Sanger sequencing was subsequently performed to confirm the presence of potential deleterious variants in the patients and verify their segregation within families. Structural modeling was conducted to study the effect of novel variants on the protein structure. Results: We identified two novel homozygous variants in NDUFAF5 (c.827G>C; p.Arg276Pro) and FASTKD2 (c.496_497del; p.Leu166GlufsTer2) associated with a severe clinical form of Leigh and Leigh-like syndromes, respectively. Our results further disclosed two variants unreported in North Africa, in GFM2 (c.569G>A; p.Arg190Gln) and FOXRED1 (c.1261G>A; p.Val421Met) genes, and we described the first case of fumaric aciduria in a Tunisian patient harboring the c.1358T>C; p.Leu453Pro FH variant. Conclusion: Our study expands the mutational and phenotypic spectrum of mitochondrial diseases in Tunisia and highlights the importance of next-generation sequencing to decipher the pathomolecular mechanisms responsible for these disorders in an admixed population.

12.
Front Endocrinol (Lausanne) ; 14: 1293124, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38192426

RESUMO

Introduction: Type 2 diabetes (T2D) is a multifactorial disease involving genetic and environmental components. Several genome-wide association studies (GWAS) have been conducted to decipher potential genetic aberrations promoting the onset of this metabolic disorder. These GWAS have identified over 400 associated variants, mostly in the intronic or intergenic regions. Recently, a growing number of exome genotyping or exome sequencing experiments have identified coding variants associated with T2D. Such studies were mainly conducted in European populations, and the few candidate-gene replication studies in North African populations revealed inconsistent results. In the present study, we aimed to discover the coding genetic etiology of T2D in the Tunisian population. Methods: We carried out a pilot Exome Wide Association Study (EWAS) on 50 Tunisian individuals. Single variant analysis was performed as implemented in PLINK on potentially deleterious coding variants. Subsequently, we applied gene-based and gene-set analyses using MAGMA software to identify genes and pathways associated with T2D. Potential signals were further replicated in an existing large in-silico dataset, involving up to 177116 European individuals. Results: Our analysis revealed, for the first time, promising associations between T2D and variations in MYORG gene, implicated in the skeletal muscle fiber development. Gene-set analysis identified two candidate pathways having nominal associations with T2D in our study samples, namely the positive regulation of neuron apoptotic process and the regulation of mucus secretion. These two pathways are implicated in the neurogenerative alterations and in the inflammatory mechanisms of metabolic diseases. In addition, replication analysis revealed nominal associations of the regulation of beta-cell development and the regulation of peptidase activity pathways with T2D, both in the Tunisian subjects and in the European in-silico dataset. Conclusions: The present study is the first EWAS to investigate the impact of single genetic variants and their aggregate effects on T2D risk in Africa. The promising disease markers, revealed by our pilot EWAS, will promote the understanding of the T2D pathophysiology in North Africa as well as the discovery of potential treatments.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Tunísia/epidemiologia , Diabetes Mellitus Tipo 2/genética , Exoma/genética , Estudo de Associação Genômica Ampla , Íntrons
13.
Front Genet ; 14: 1224284, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38162681

RESUMO

Introduction: Monogenic diabetes (MD) accounts for 3%-6% of all cases of diabetes. This prevalence is underestimated due to its overlapping clinical features with type 1 and type 2 diabetes. Hence, genetic testing is the most appropriate tool for obtaining an accurate diagnosis. In Tunisia, few cohorts of MD have been investigated until now. The aim of this study is to search for pathogenic variants among 11 patients suspected of having MD in Tunisia using whole-exome sequencing (WES). Materials and methods: WES was performed in 11 diabetic patients recruited from a collaborating medical center. The pathogenicity of genetic variation was assessed using combined filtering and bioinformatics prediction tools. The online ORVAL tool was used to predict the likelihood of combinations of pathogenic variations. Then, Sanger sequencing was carried out to confirm likely pathogenic predicted variants among patients and to check for familial segregation. Finally, for some variants, we performed structural modeling to study their impact on protein function. Results: We identified novel variants related to MD in Tunisia. Pathogenic variants are located in several MODY and non-MODY genes. We highlighted the presence of syndromic forms of diabetes, including the Bardet-Biedl syndrome, Alström syndrome, and severe insulin resistance, as well as the presence of isolated diabetes with significantly reduced penetrance for Wolfram syndrome-related features. Idiopathic type 1 diabetes was also identified in one patient. Conclusion: In this study, we emphasized the importance of genetic screening for MD in patients with a familial history of diabetes, mainly among admixed and under-represented populations living in low- and middle-income countries. An accurate diagnosis with molecular investigation of MD may improve the therapeutic choice for better management of patients and their families. Additional research and rigorous investigations are required to better understand the physiopathological mechanisms of MD and implement efficient therapies that take into account genomic context and other related factors.

14.
Biomed Res Int ; 2023: 6638714, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37854792

RESUMO

Hackathons are collaborative events that bring together diverse groups to solve predefined challenges. The COVID-19 pandemic caused by SARS-CoV-2 has emphasized the need for portable and reproducible genomics analysis pipelines to study the genetic susceptibility of the human host and investigate human-SARS-CoV-2 protein interactions. To build and strengthen institutional capacities in OMICS data analysis applied to host-pathogen interaction (HPI), the PHINDaccess project organized two hackathons in 2020 and 2021. These hackathons are aimed at developing bioinformatics pipelines related to the SARS-CoV-2 viral genome, its phylodynamic transmission, and the identification of human genome host variants, with a focus on addressing global health challenges, particularly in low- and middle-income countries (LMIC). This paper outlines the preparation, proceedings, and lessons learned from these hackathons, including the challenges faced by participants and our recommendations based on our experience for organizing hackathons in LMIC and beyond.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , SARS-CoV-2/genética , Países em Desenvolvimento , Pandemias , Interações Hospedeiro-Patógeno/genética
15.
Diabetol Metab Syndr ; 14(1): 25, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35109885

RESUMO

BACKGROUND: Variants in the Hepatocyte Nuclear Factor 1 Alpha gene (HNF1A) are associated with lipoproteins levels and type 2 diabetes. In this study, we aimed to assess the association of HNF1A gene and haplotypes with the metabolic syndrome (MetS) and its components through an association study in the Tunisian population as well as by a meta-analysis. METHODS: A total of 594 Tunisian individuals were genotyped for three variants (rs1169288, rs2464196 and rs735396) located in HNF1A gene using KASPar technology. Statistical analyses were performed with R software. The association was furthermore evaluated through a meta-analysis of our results with those obtained in a Moroccan population. RESULTS: Our results showed no association between HNF1A variants and MetS in the Tunisian population. However, a significant association was observed between the variant rs735396 and a higher waist circumference. The stratified analysis according to the sex highlighted a significant association between the variant rs1169288 and high cholesterol levels only in women. Similarly, Haplotype analysis showed an association between the HNF1A minor haplotype and high total cholesterol mainly in women. Finally, our meta-analysis showed no association between HNF1A variants and MetS. CONCLUSIONS: Our findings exclude the involvement of the three HNF1A variants rs1169288, rs2464196 and rs735396 in the susceptibility to MetS in our studied Tunisian population but emphasize the role of these variants in the cholesterol homeostasis with sex-specific differences, which may serve to rise clinical consideration to early statin therapy in women carrying these genetic variants.

16.
Biosci Rep ; 42(9)2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36093993

RESUMO

Mitochondrial cytopathies, among which the Leigh syndrome (LS), are caused by variants either in the mitochondrial or the nuclear genome, affecting the oxidative phosphorylation process. The aim of the present study consisted in defining the molecular diagnosis of a group of Tunisian patients with LS. Six children, belonging to five Tunisian families, with clinical and imaging presentations suggestive of LS were recruited. Whole mitochondrial DNA and targeted next-generation sequencing of a panel of 281 nuclear genes involved in mitochondrial physiology were performed. Bioinformatic analyses were achieved in order to identify deleterious variations. A single m.10197G>A (p.Ala47Thr) variant was found in the mitochondrial MT-ND3 gene in one patient, while the others were related to autosomal homozygous variants: two c.1412delA (p.Gln471ArgfsTer42) and c.1264A>G (p.Thr422Ala) in SLC19A3, one c.454C>G (p.Pro152Ala) in SLC25A19 and one c.122G>A (p.Gly41Asp) in ETHE1. Our findings demonstrate the usefulness of genomic investigations to improve LS diagnosis in consanguineous populations and further allow for treating the patients harboring variants in SLC19A3 and SLC25A19 that contribute to thiamine transport, by thiamine and biotin supplementation. Considering the Tunisian genetic background, the newly identified variants could be screened in patients with similar clinical presentation in related populations.


Assuntos
Doença de Leigh , Biotina/genética , Criança , DNA Mitocondrial/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Doença de Leigh/diagnóstico , Doença de Leigh/genética , Doença de Leigh/terapia , Proteínas de Membrana Transportadoras/genética , Proteínas de Transporte da Membrana Mitocondrial , Proteínas Mitocondriais/genética , Mutação , Proteínas de Transporte Nucleocitoplasmático/genética , Tiamina
17.
NPJ Genom Med ; 6(1): 3, 2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420067

RESUMO

Copy number variation (CNV) is considered as the most frequent type of structural variation in the human genome. Some CNVs can act on human phenotype diversity, encompassing rare Mendelian diseases and genomic disorders. The North African populations remain underrepresented in public genetic databases in terms of single-nucleotide variants as well as for larger genomic mutations. In this study, we present the first CNV map for a North African population using the Affymetrix Genome-Wide SNP (single-nucleotide polymorphism) array 6.0 array genotyping intensity data to call CNVs in 102 Tunisian healthy individuals. Two softwares, PennCNV and Birdsuite, were used to call CNVs in order to provide reliable data. Subsequent bioinformatic analyses were performed to explore their features and patterns. The CNV map of the Tunisian population includes 1083 CNVs spanning 61.443 Mb of the genome. The CNV length ranged from 1.017 kb to 2.074 Mb with an average of 56.734 kb. Deletions represent 57.43% of the identified CNVs, while duplications and the mixed loci are less represented. One hundred and three genes disrupted by CNVs are reported to cause 155 Mendelian diseases/phenotypes. Drug response genes were also reported to be affected by CNVs. Data on genes overlapped by deletions and duplications segments and the sequence properties in and around them also provided insights into the functional and health impacts of CNVs. These findings represent valuable clues to genetic diversity and personalized medicine in the Tunisian population as well as in the ethnically similar populations from North Africa.

18.
PLoS One ; 16(10): e0258777, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34669720

RESUMO

Erythrokeratodermia variabilis (EKV) is a rare disorder of cornification usually associated with dominant mutations in the GJB3 and GJB4 genes encoding connexins (Cx)31 and 30.3. Genetic heterogeneity of EKV has already been suggested. We investigated at the clinical and genetic level a consanguineous Tunisian family with 2 sisters presenting an autosomal recessive form of EKV to better characterize this disease. Mutational analysis initially screened the connexin genes and Whole-exome sequencing (WES) was performed to identify the molecular aetiology of the particular EKV phenotype in the proband. Migratory shaped erythematous areas are the initial presenting sign followed by relatively stable hyperkeratotic plaques are the two predominates characteristics in both patients. However, remarkable variability of morphological and dominating features of the disease were observed between patients. In particular, the younger sister (proband) exhibited ichthyosiform-like appearance suggesting Autosomal Recessive Congenital Ichthyosis (ARCI) condition. No causative mutations were detected in the GJB3 and GJB4 genes. WES results revealed a novel missense homozygous mutation in NIPAL4 gene (c.835C>G, p.Pro279Ala) in both patients. This variant is predicted to be likely pathogenic. In addition, in silico analysis of the mutated 3D domain structure predicted that this variant would result in NIPA4 protein destabilization and Mg2+ transport perturbation, pointing out the potential role of NIPAL4 gene in the development and maintenance of the barrier function of the epidermis. Taken togheter, these results expand the clinical phenotype associated with NIPAL4 mutation and reinforce our hypothesis of NIPAL4 as the main candidate gene for the EKV-like ARCI phenotype.


Assuntos
Eritroceratodermia Variável/genética , Sequenciamento do Exoma/métodos , Mutação de Sentido Incorreto , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Criança , Conexinas/genética , Consanguinidade , Feminino , Humanos , Lactente , Simulação de Acoplamento Molecular , Linhagem , Fenótipo , Estabilidade Proteica , Tunísia
19.
Front Genet ; 12: 664963, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34691137

RESUMO

Juvenile-onset diabetes may occur in the context of a rare syndromic presentation, suggesting a monogenic etiology rather than a common multifactorial diabetes. In the present study, we report the case of a young diabetic Tunisian patient presenting learning problems, speech deficits, short stature, brachydactyly, and a normal weight. Whole exome sequencing analysis revealed five heterozygous genetic variants in BBS1, BBS4, BBS8, MKS1, and CEP290. These genes are involved in the regulation of cilium biogenesis and function. We analyzed variant combinations pathogenicity using the recently developed ORVAL tool, and we hypothesized that cumulative synergetic effects of these variants could explain the syndromic phenotype observed in our patient. Therefore, our investigation suggested a genetic diagnosis of Bardet-Biedl syndrome with an oligogenic inheritance pattern rather than a monogenic diabetes. Although there is no curative therapy for this ciliopathy at the moment, a genetic diagnosis may offer other supportive care options, including the prevention of other possible clinical manifestations of this syndrome, mainly renal abnormalities, obesity, liver fibrosis, and hypertension, as well as the genetic counseling for family members.

20.
PLoS One ; 16(1): e0245362, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33503040

RESUMO

Hereditary breast cancer accounts for 5-10% of all breast cancer cases. So far, known genetic risk factors account for only 50% of the breast cancer genetic component and almost a quarter of hereditary cases are carriers of pathogenic mutations in BRCA1/2 genes. Hence, the genetic basis for a significant fraction of familial cases remains unsolved. This missing heritability may be explained in part by Copy Number Variations (CNVs). We herein aimed to evaluate the contribution of CNVs to hereditary breast cancer in Tunisia. Whole exome sequencing was performed for 9 BRCA negative cases with a strong family history of breast cancer and 10 matched controls. CNVs were called using the ExomeDepth R-package and investigated by pathway analysis and web-based bioinformatic tools. Overall, 483 CNVs have been identified in breast cancer patients. Rare CNVs affecting cancer genes were detected, of special interest were those disrupting APC2, POU5F1, DOCK8, KANSL1, TMTC3 and the mismatch repair gene PMS2. In addition, common CNVs known to be associated with breast cancer risk have also been identified including CNVs on APOBECA/B, UGT2B17 and GSTT1 genes. Whereas those disrupting SULT1A1 and UGT2B15 seem to correlate with good clinical response to tamoxifen. Our study revealed new insights regarding CNVs and breast cancer risk in the Tunisian population. These findings suggest that rare and common CNVs may contribute to disease susceptibility. Those affecting mismatch repair genes are of interest and require additional attention since it may help to select candidates for immunotherapy leading to better outcomes.


Assuntos
Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias da Mama/genética , Mutação em Linhagem Germinativa , Adulto , Neoplasias da Mama/epidemiologia , Variações do Número de Cópias de DNA , Feminino , Genes BRCA1 , Genes BRCA2 , Predisposição Genética para Doença , Humanos , Pessoa de Meia-Idade , Tunísia/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA