Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Pharmacol Res ; 194: 106813, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37302724

RESUMO

The study of nicotinic acetylcholine receptors (nAChRs) has significantly progressed in the last decade, due to a) the improved techniques available for structural studies; b) the identification of ligands interacting at orthosteric and allosteric recognition sites on the nAChR proteins, able to tune channel conformational states; c) the better functional characterization of receptor subtypes/subunits and their therapeutic potential; d) the availability of novel pharmacological agents able to activate or block nicotinic-mediated cholinergic responses with subtype or stoichiometry selectivity. The copious literature on nAChRs is related to the pharmacological profile of new, promising subtype selective derivatives as well as the encouraging preclinical and early clinical evaluation of known ligands. However, recently approved therapeutic derivatives are still missing, and examples of ligands discontinued in advanced CNS clinical trials include drug candidates acting at both neuronal homomeric and heteromeric receptors. In this review, we have selected heteromeric nAChRs as the target and comment on literature reports of the past five years dealing with the discovery of new small molecule ligands or the advanced pharmacological/preclinical investigation of more promising compounds. The results obtained with bifunctional nicotinic ligands and a light-activated ligand as well as the applications of promising radiopharmaceuticals for heteromeric subtypes are also discussed.


Assuntos
Receptores Nicotínicos , Receptores Nicotínicos/metabolismo , Ligantes , Regulação Alostérica , Neurônios/metabolismo , Transmissão Sináptica , Nicotina , Antagonistas Nicotínicos/metabolismo , Antagonistas Nicotínicos/farmacologia
2.
Molecules ; 28(5)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36903650

RESUMO

In the last few years, fluorescence resonance energy transfer (FRET) receptor sensors have contributed to the understanding of GPCR ligand binding and functional activation. FRET sensors based on muscarinic acetylcholine receptors (mAChRs) have been employed to study dual-steric ligands, allowing for the detection of different kinetics and distinguishing between partial, full, and super agonism. Herein, we report the synthesis of the two series of bitopic ligands, 12-Cn and 13-Cn, and their pharmacological investigation at the M1, M2, M4, and M5 FRET-based receptor sensors. The hybrids were prepared by merging the pharmacophoric moieties of the M1/M4-preferring orthosteric agonist Xanomeline 10 and the M1-selective positive allosteric modulator 77-LH-28-1 (1-[3-(4-butyl-1-piperidinyl)propyl]-3,4-dihydro-2(1H)-quinolinone) 11. The two pharmacophores were connected through alkylene chains of different lengths (C3, C5, C7, and C9). Analyzing the FRET responses, the tertiary amine compounds 12-C5, 12-C7, and 12-C9 evidenced a selective activation of M1 mAChRs, while the methyl tetrahydropyridinium salts 13-C5, 13-C7, and 13-C9 showed a degree of selectivity for M1 and M4 mAChRs. Moreover, whereas hybrids 12-Cn showed an almost linear response at the M1 subtype, hybrids 13-Cn evidenced a bell-shaped activation response. This different activation pattern suggests that the positive charge anchoring the compound 13-Cn to the orthosteric site ensues a degree of receptor activation depending on the linker length, which induces a graded conformational interference with the binding pocket closure. These bitopic derivatives represent novel pharmacological tools for a better understanding of ligand-receptor interactions at a molecular level.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Receptores Acoplados a Proteínas G , Cricetinae , Animais , Ligantes , Receptores Muscarínicos , Receptor Muscarínico M1/agonistas , Receptor Muscarínico M1/metabolismo , Células CHO
3.
Molecules ; 27(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36144707

RESUMO

In recent years, an impressive number of research studies have been conducted to improve the understanding of the structure and function of the cholinergic system, and significant progress has also been made in elucidating the roles of neuronal and non-neuronal acetylcholine (ACh) in the pathogenesis and treatment of human disease [...].


Assuntos
Acetilcolina , Colinérgicos , Colinérgicos/farmacologia , Humanos , Neurônios , Transdução de Sinais
4.
Molecules ; 26(24)2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34946750

RESUMO

Due to the microenvironment created by Schwann cell (SC) activity, peripheral nerve fibers are able to regenerate. Inflammation is the first response to nerve damage and the removal of cellular and myelin debris is essential in preventing the persistence of the local inflammation that may negatively affect nerve regeneration. Acetylcholine (ACh) is one of the neurotransmitters involved in the modulation of inflammation through the activity of its receptors, belonging to both the muscarinic and nicotinic classes. In this report, we evaluated the expression of α7 nicotinic acetylcholine receptors (nAChRs) in rat sciatic nerve, particularly in SCs, after peripheral nerve injury. α7 nAChRs are absent in sciatic nerve immediately after dissection, but their expression is significantly enhanced in SCs after 24 h in cultured sciatic nerve segments or in the presence of the proinflammatory neuropeptide Bradykinin (BK). Moreover, we found that activation of α7 nAChRs with the selective partial agonist ICH3 causes a decreased expression of c-Jun and an upregulation of uPA, MMP2 and MMP9 activity. In addition, ICH3 treatment inhibits IL-6 transcript level expression as well as the cytokine release. These results suggest that ACh, probably released from regenerating axons or by SC themselves, may actively promote through α7 nAChRs activation an anti-inflammatory microenvironment that contributes to better improving the peripheral nerve regeneration.


Assuntos
Regeneração Nervosa , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Acetilcolina/metabolismo , Animais , Células Cultivadas , Masculino , Neurotransmissores/metabolismo , Ratos , Ratos Wistar , Células de Schwann/metabolismo
5.
Bioorg Chem ; 96: 103633, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32032848

RESUMO

We synthesized a set of new hybrid derivatives (7-C8, 7-C10, 7-C12 and 8-C8, 8-C10, 8-C12), in which a polymethylene spacer chain of variable length connected the pharmacophoric moiety of xanomeline, an M1/M4-preferring orthosteric muscarinic agonist, with that of tacrine, a well-known acetylcholinesterase (AChE) inhibitor able to allosterically modulate muscarinic acetylcholine receptors (mAChRs). When tested in vitro in a colorimetric assay for their ability to inhibit AChE, the new compounds showed higher or similar potency compared to that of tacrine. Docking analyses were performed on the most potent inhibitors in the series (8-C8, 8-C10, 8-C12) to rationalize their experimental inhibitory power against AChE. Next, we evaluated the signaling cascade at M1 mAChRs by exploring the interaction of Gαq-PLC-ß3 proteins through split luciferase assays and the myo-Inositol 1 phosphate (IP1) accumulation in cells. The results were compared with those obtained on the known derivatives 6-C7 and 6-C10, two quite potent AChE inhibitors in which tacrine is linked to iperoxo, an exceptionally potent muscarinic orthosteric activator. Interestingly, we found that 6-C7 and 6-C10 behaved as partial agonists of the M1 mAChR, at variance with hybrids 7-Cn and 8-Cn containing xanomeline as the orthosteric molecular fragment, which were all unable to activate the receptor subtype response.


Assuntos
Inibidores da Colinesterase/farmacologia , Isoxazóis/farmacologia , Piridinas/farmacologia , Compostos de Amônio Quaternário/farmacologia , Receptor Muscarínico M1/metabolismo , Tacrina/farmacologia , Tiadiazóis/farmacologia , Acetilcolinesterase/metabolismo , Regulação Alostérica/efeitos dos fármacos , Animais , Células CHO , Inibidores da Colinesterase/química , Cricetulus , Electrophorus , Humanos , Isoxazóis/síntese química , Isoxazóis/química , Ligantes , Simulação de Acoplamento Molecular , Piridinas/síntese química , Piridinas/química , Compostos de Amônio Quaternário/síntese química , Compostos de Amônio Quaternário/química , Receptor Muscarínico M1/agonistas , Tacrina/análogos & derivados , Tacrina/síntese química , Tiadiazóis/síntese química , Tiadiazóis/química
6.
Int J Mol Sci ; 21(5)2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32143488

RESUMO

l-Carnosine (ß-Ala-l-His) and several other histidine-containing peptides, including two N-methylated forms on the imidazole ring (l-anserine and l-balenine), two derivatives modified on the carboxyl function (carcinine and l-carnosinamide), two analogues differing in the length of the N-terminal residue (l-homocarnosine and Gly-l-His) and the N-acetyl derivatives, were investigated as activators of four isoforms of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1). The four human isoforms hCA I, II, VA and IX were activated in the low to high micromolar range, with a rather complex structure activity relationship. A performed computational study allowed us to rationalize these results and to propose a binding mode of these activators within the enzyme active site. Similarly to other CA activators, the here studied peptides could find relevant pharmacological applications such as in the management of CA deficiencies, for therapy memory and enhancing cognition or for artificial tissues engineering.


Assuntos
Anidrases Carbônicas/metabolismo , Carnosina/química , Dipeptídeos/química , Histidina/química , Anidrase Carbônica I/metabolismo , Anidrase Carbônica II/metabolismo , Anidrase Carbônica IX/metabolismo , Anidrase Carbônica V/metabolismo , Carnosina/análogos & derivados , Quelantes/farmacologia , Humanos , Cinética , Modelos Moleculares , Domínios Proteicos , Prótons , Software
7.
FASEB J ; 31(1): 192-202, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27682206

RESUMO

Although α6-contaning (α6*) nicotinic acetylcholine receptors (nAChRs) are densely expressed in the visual system, their role is not well known. We have characterized a family of toxins that are antagonists for α6ß2* receptors and used one of these [RDP-MII(E11R)] to localize α6* nAChRs and investigate their impact on retinal function in adult Long-Evans rats. The α6*nAChRs in retinal tissue were localized using either a fluorescently tagged [RDP-MII(E11R)] or anti-α6-specific antibodies and found to be predominantly at the level of the ganglion cell layer. After intraocular injection of RDP-MII(E11R) in one eye and vehicle or inactive MII in contralateral eyes as controls, we recorded flash electroretinograms (F-ERGs), pattern ERGs (P-ERGs), and cortical visual-evoked potential (VEPs). There was no significant difference in F-ERG between the RDP-MII(E11R)-treated and control eyes. In contrast, P-ERG response amplitude was significantly reduced in the RDP-MII(E11R)-injected eye. Blocking α6* nAChRs at retinal level also decreased the VEP amplitude recorded in the visual cortex contralateral to the injected eye. Because both the cortical and inner retina output were affected by RDP-MII(E11R), whereas photoreceptor output was preserved, we conclude that the reduced visual response was due to an alteration in the function of α6* nAChRs present in the ganglion cell layer.-Barloscio, D., Cerri, E., Domenici, L., Longhi, R., Dallanoce, C., Moretti, M., Vilella, A., Zoli, M., Gotti, C., and Origlia, N. In vivo study of the role of α6-containing nicotinic acetylcholine receptor in retinal function using subtype-specific RDP-MII(E11R) toxin.


Assuntos
Conotoxinas/toxicidade , Antagonistas Nicotínicos/toxicidade , Receptores Nicotínicos/metabolismo , Retina/fisiologia , Animais , Córtex Cerebral/fisiologia , Conotoxinas/administração & dosagem , Potenciais Evocados Visuais/efeitos dos fármacos , Potenciais Evocados Visuais/fisiologia , Masculino , Antagonistas Nicotínicos/administração & dosagem , Ratos , Ratos Long-Evans
8.
Chem Biodivers ; 15(9): e1800210, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29953725

RESUMO

Alpha7 nicotinic acetylcholine receptor is emerging as a central regulator in inflammatory processes, as documented by increasing studies reported in the literature. For instance, the activation of this nicotinic receptor subtype in resident macrophages inhibits the production of pro-inflammatory cytokines, thereby attenuating local inflammatory responses, and may open a new window in the treatment of chronic inflammatory disease, such as Crohn's disease, rheumatoid arthritis, psoriasis, and asthma. In continuation of our ongoing research for the development of new cholinergic drug candidates, we selected the nicotine derivative CAP55, which was previously shown to exert anti-inflammatory effects via nicotinic stimulation, as a suitable compound for lead optimization. Through the isosteric replacement of its 3,5-disubstituted 4,5-dihydroisoxazole core with a 1,4-disubstituted 1,2,3-triazole ring, we could rapidly generate a small library of CAP55-related analogs via a one-pot copper(I)-catalyzed azide-alkyne cycloaddition. Receptor binding assays at nAChRs led to the identification of two promising derivatives, compounds 4 and 10, worthy of further pharmacological studies.


Assuntos
Macrófagos/metabolismo , Nicotina/análogos & derivados , Triazóis/química , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Sítios de Ligação , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Nicotina/química , Nicotina/farmacologia , Espectroscopia de Prótons por Ressonância Magnética , Receptor Nicotínico de Acetilcolina alfa7/química
9.
Mol Pharmacol ; 91(4): 348-356, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28167741

RESUMO

Protean agonists are of great pharmacological interest as their behavior may change in magnitude and direction depending on the constitutive activity of a receptor. Yet, this intriguing phenomenon has been poorly described and understood, due to the lack of stable experimental systems and design strategies. In this study, we overcome both limitations: First, we demonstrate that modulation of the ionic strength in a defined experimental set-up allows for analysis of G protein-coupled receptor activation in the absence and presence of a specific amount of spontaneous receptor activity using the muscarinic M2 acetylcholine receptor as a model. Second, we employ this assay system to show that a dualsteric design principle, that is, molecular probes, carrying two pharmacophores to simultaneously adopt orthosteric and allosteric topography within a G protein-coupled receptor, may represent a novel approach to achieve protean agonism. We pinpoint three molecular requirements within dualsteric compounds that elicit protean agonism at the muscarinic M2 acetylcholine receptor. Using radioligand-binding and functional assays, we posit that dynamic ligand binding may be the mechanism underlying protean agonism of dualsteric ligands. Our findings provide both new mechanistic insights into the still enigmatic phenomenon of protean agonism and a rationale for the design of such compounds for a G protein-coupled receptor.


Assuntos
Engenharia de Proteínas , Receptores Acoplados a Proteínas G/agonistas , Regulação Alostérica , Animais , Células CHO , Cricetinae , Cricetulus , Humanos , Ligantes , Ligação Proteica , Receptor Muscarínico M2/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Trometamina
10.
J Biol Chem ; 291(31): 16375-89, 2016 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-27298318

RESUMO

G protein-coupled receptors constitute the largest family of membrane receptors and modulate almost every physiological process in humans. Binding of agonists to G protein-coupled receptors induces a shift from inactive to active receptor conformations. Biophysical studies of the dynamic equilibrium of receptors suggest that a portion of receptors can remain in inactive states even in the presence of saturating concentrations of agonist and G protein mimetic. However, the molecular details of agonist-bound inactive receptors are poorly understood. Here we use the model of bitopic orthosteric/allosteric (i.e. dualsteric) agonists for muscarinic M2 receptors to demonstrate the existence and function of such inactive agonist·receptor complexes on a molecular level. Using all-atom molecular dynamics simulations, dynophores (i.e. a combination of static three-dimensional pharmacophores and molecular dynamics-based conformational sampling), ligand design, and receptor mutagenesis, we show that inactive agonist·receptor complexes can result from agonist binding to the allosteric vestibule alone, whereas the dualsteric binding mode produces active receptors. Each agonist forms a distinct ligand binding ensemble, and different agonist efficacies depend on the fraction of purely allosteric (i.e. inactive) versus dualsteric (i.e. active) binding modes. We propose that this concept may explain why agonist·receptor complexes can be inactive and that adopting multiple binding modes may be generalized also to small agonists where binding modes will be only subtly different and confined to only one binding site.


Assuntos
Simulação de Dinâmica Molecular , Receptor Muscarínico M2/agonistas , Receptor Muscarínico M2/química , Regulação Alostérica , Animais , Células CHO , Cricetinae , Cricetulus , Humanos , Ligantes , Receptor Muscarínico M2/metabolismo
11.
Nat Chem Biol ; 10(1): 18-20, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24212135

RESUMO

We present a new concept of partial agonism at G protein-coupled receptors. We demonstrate the coexistence of two functionally distinct populations of the muscarinic M2 receptor stabilized by one dynamic ligand, which binds in two opposite orientations. The ratio of orientations determines the cellular response. Our concept allows predicting and virtually titrating ligand efficacy, which opens unprecedented opportunities for the design of drugs with graded activation of the biological system.


Assuntos
Receptores Acoplados a Proteínas G/agonistas , Sítios de Ligação , Ligantes , Receptores Acoplados a Proteínas G/metabolismo
12.
J Chem Inf Model ; 55(12): 2528-39, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26569022

RESUMO

Increasing attention has recently been devoted to allosteric modulators, as they can provide inherent advantages over classic receptor agonists. In the field of nicotinic receptors (nAChRs), the main advantage is that allosteric modulators can trigger pharmacological responses, limiting receptor desensitization. Most of the known allosteric ligands are "positive allosteric modulators" (PAMs), which increase both sensitivity to receptor agonists and current amplitude. Intriguingly, some allosteric modulators are also able to activate the α7 receptor (α7-nAChR) even in the absence of orthosteric agonists. These compounds have been named "ago-allosteric modulators" and GAT107 has been studied in depth because of its unique mechanism of action. We here investigate by molecular dynamics simulations, metadynamics, and essential dynamics the activation mechanism of α7-nAChR, in the presence of different nicotinic modulators. We determine the free energy profiles associated with the closed-to-open motion of the loop C, and we highlight mechanistic differences observed in the presence of different modulators. In particular, we demonstrate that GAT107 triggers conformational motions and cross-talk similar to those observed when the α7-nACh receptor is in complex with both an agonist and an allosteric modulator.


Assuntos
Modelos Biológicos , Simulação de Dinâmica Molecular , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Regulação Alostérica , Sítios de Ligação , Humanos , Ligantes , Modelos Moleculares , Termodinâmica
13.
ACS Chem Neurosci ; 15(4): 827-843, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38335726

RESUMO

Several lines of evidence have indicated that nicotinic acetylcholine receptors (nAChR) that contain α9 subunits, probably in combination with α10 subunits, may be valuable targets for the management of pain associated with inflammatory diseases through a cholinergic anti-inflammatory system (CAS), which has also been associated with α7 nAChR. Both α7- and α9-containing neuronal nAChR can be pharmacologically distinguished from the high-affinity nicotinic receptors of the brain by their sensitivity to α-bungarotoxin, but in other ways, they have quite distinct pharmacological profiles. The early association of α7 with CAS led to the development of numerous new ligands, variously characterized as α7 agonists, partial agonists, or silent agonists that desensitized α7 receptors without activation. Subsequent reinvestigation of one such family of α7 ligands based on an N,N-diethyl-N'-phenylpiperazine scaffold led to the identification of potent agonists and antagonists for α9. In this paper, we characterize the α9/α10 activity of a series of compounds based on a 5-(quinuclidin-3-ylmethyl)-1,2,4-oxadiazole (QMO) scaffold and identify two new potent ligands of α9, QMO-28, an agonist, and QMO-17, an antagonist. We separated the stereoisomers of these compounds to identify the most potent agonist and discovered that only the 3R isomer of QMO-17 was an α9 antagonist, permitting an in silico model of α9 antagonism to be developed. The α9 activity of these compounds was confirmed to be potentially useful for CAS management of inflammatory pain in cell-based assays of cytokine release.


Assuntos
Receptores Nicotínicos , Humanos , Oxidiazóis/farmacologia , Receptor Nicotínico de Acetilcolina alfa7 , Ligantes , Dor
14.
J Comput Aided Mol Des ; 27(11): 975-87, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24276616

RESUMO

The binding mode of nicotinic agonists has been thoroughly investigated in the last decades. It is now accepted that the charged amino group is bound by a cation-π interaction to a conserved tryptophan residue, and that the aromatic moiety is projected into a hydrophobic pocket deeply located inside the binding cleft. A hydrogen bond donor/acceptor, maybe a water molecule solvating this receptor subsite, contributes to further stabilize the nicotinic ligands. The position of this water molecule has been established by several X-ray structures of the acetylcholine-binding protein. In this study, we computationally analyzed the role of this water molecule as a putative hydrogen bond donor/acceptor moiety in the agonist binding site of the three most relevant heteromeric (α4ß2, α3ß4) and homomeric (α7) neuronal nicotinic acetylcholine receptor (nAChR) subtypes. Our theoretical investigation made use of epibatidine 1 and deschloroepibatidine 2 as molecular probes, and was then extended to their analogues 3 and 4, which were subsequently synthesized and tested at the three target receptor subtypes. Although the pharmacological data for the new ligands 3 and 4 indicated a reduction of the affinity at the studied nAChRs with respect to reference agonists, a variation of the selectivity profile was clearly evidenced.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/química , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Agonistas Nicotínicos/química , Agonistas Nicotínicos/farmacologia , Piridinas/química , Piridinas/farmacologia , Receptores Colinérgicos/metabolismo , Água/química , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Sondas Moleculares/química , Dados de Sequência Molecular , Receptores Colinérgicos/química
15.
Cells ; 12(11)2023 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-37296615

RESUMO

BACKGROUND: Schwann cells (SCs) are glial cells involved in peripheral axon myelination. SCs also play a strategic role after peripheral nerve injury, regulating local inflammation and axon regeneration. Our previous studies demonstrated the presence of cholinergic receptors in SCs. In particular, the α7 nicotinic acetylcholine receptors (nAChRs) are expressed in SCs after peripheral axotomy, suggesting their involvement in the regulation of SC-regenerating properties. To clarify the role that α7 nAChRs may play after peripheral axon damage, in this study we investigated the signal transduction pathways triggered by receptor activation and the effects produced by their activation. METHODS: Both ionotropic and metabotropic cholinergic signaling were analyzed by calcium imaging and Western blot analysis, respectively, following α7 nAChR activation. In addition, the expression of c-Jun and α7 nAChRs was evaluated by immunocytochemistry and Western blot analysis. Finally, the cell migration was studied by a wound healing assay. RESULTS: Activation of α7 nAChRs, activated by the selective partial agonist ICH3, did not induce calcium mobilization but positively modulated the PI3K/AKT/mTORC1 axis. Activation of the mTORC1 complex was also supported by the up-regulated expression of its specific p-p70 S6KThr389 target. Moreover, up-regulation of p-AMPKThr172, a negative regulator of myelination, was also observed concomitantly to an increased nuclear accumulation of the transcription factor c-Jun. Cell migration and morphology analyses proved that α7 nAChR activation also promotes SC migration. CONCLUSIONS: Our data demonstrate that α7 nAChRs, expressed by SCs only after peripheral axon damage and/or in an inflammatory microenvironment, contribute to improve the SCs regenerating properties. Indeed, α7 nAChR stimulation leads to an upregulation of c-Jun expression and promotes Schwann cell migration by non-canonical pathways involving the mTORC1 activity.


Assuntos
Axônios , Receptor Nicotínico de Acetilcolina alfa7 , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Axônios/metabolismo , Cálcio/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Regeneração Nervosa , Transdução de Sinais/fisiologia , Células de Schwann/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo
16.
Cancers (Basel) ; 16(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38201453

RESUMO

BACKGROUND: Although autophagy is a pro-survival process of tumor cells, it can stimulate cell death in particular conditions and when differently regulated by specific signals. We previously demonstrated that the selective stimulation of the M2 muscarinic receptor subtype (mAChR) negatively controls cell proliferation and survival and causes oxidative stress and cytotoxic and genotoxic effects in both GBM cell lines and GBM stem cells (GSCs). In this work, we have evaluated whether autophagy was induced as a downstream mechanism of the observed cytotoxic processes induced by M2 mAChR activation by the orthosteric agonist APE or the dualsteric agonist N8-Iper (N8). METHODS: To assess the activation of autophagy, we analyzed the expression of LC3B using Western blot analysis and in LC3B-EGFP transfected cell lines. Apoptosis was assessed by measuring the protein expression of Caspases 3 and 9. RESULTS: Our data indicate that activation of M2 mAChR by N8 promotes autophagy in both U251 and GB7 cell lines as suggested by the LC3B-II expression level and analysis of the transfected cells by fluorescence microscopy. Autophagy induction by M2 mAChRs is regulated by the decreased activity of the PI3K/AKT/mTORC1 pathway and upregulated by pAMPK expression. Downstream of autophagy activation, an increase in apoptosis was also observed in both cell lines after treatment with the two M2 agonists. CONCLUSIONS: N8 treatment causes autophagy via pAMPK upregulation, followed by apoptosis in both investigated cell lines. In contrast, the absence of autophagy in APE-treated GSC cells seems to indicate that cell death could be triggered by mechanisms alternative to those observed for N8.

17.
FASEB J ; 25(11): 3775-89, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21778325

RESUMO

α6ß2* Nicotinic acetylcholine receptors are expressed in selected central nervous system areas, where they are involved in striatal dopamine (DA) release and its behavioral consequences, and other still uncharacterized brain activities. α6ß2* receptors are selectively blocked by the α-conotoxins MII and PIA, which bear a characteristic N-terminal amino acid tail [arginine (R), aspartic acid (D), and proline (P)]. We synthesized a group of PIA-related peptides in which R1 was mutated or the RDP motif gradually removed. Binding and striatal DA release assays of native rat α6ß2* receptors showed that the RDP sequence, and particularly residue R1, is essential for the activity of PIA. On the basis of molecular modeling analyses, we synthesized a hybrid peptide (RDP-MII) that had increased potency (7-fold) and affinity (13-fold) for α6ß2* receptors but not for the very similar α3ß2* subtype. As docking studies also suggested that E11 of MII might be a key residue engendering α6ß2* vs. α3ß2* selectivity, we prepared MII[E11R] and RDP-MII[E11R] peptides. Their affinity and potency for native α6ß2* receptors were similar to those of their parent analogues, whereas, for the oocyte expressed rat α3ß2* subtype, they showed a 31- and 14-fold lower affinity and 21- and 3.5-fold lower potency. Thus, MII[E11R] and RDP-MII[E11R] are potent antagonists showing a degree of α6ß2* vs. α3ß2* selectivity in vivo.


Assuntos
Conotoxinas/química , Antagonistas Nicotínicos/metabolismo , Receptores Nicotínicos/metabolismo , Animais , Conotoxinas/genética , Conotoxinas/metabolismo , Masculino , Modelos Moleculares , Simulação de Dinâmica Molecular , Ligação Proteica , Engenharia de Proteínas , Ratos , Ratos Sprague-Dawley
18.
Bioorg Med Chem Lett ; 22(2): 829-32, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22222032

RESUMO

A group of novel racemic nicotinic ligands structurally related to epibatidine or epiboxidine [(±)-10-(±)-17] was synthesized through a palladium-catalyzed cross-coupling between the appropriate vinyl triflate and a range of organometallic heterocycles. The target compounds were evaluated for binding affinity at the α4ß2 and α7 neuronal nicotinic receptors (nAChRs). The set of 3-pyridinyl derivatives (±)-10, (±)-11 and (±)-12 exhibited an affinity for the α4ß2 nAChR subtype in the subnanomolar range (K(i) values of 0.20, 0.40 and 0.50nM, respectively) and behaved as α4ß2 versus α7 subtype selective ligands. Interestingly, the epiboxidine-related dimethylammonium iodide (±)-17, which retained a good affinity for the α4ß2 nAChR (K(i)=13.30nM), tightly bound also to the α7 subtype (K(i)=1.60nM), thus displaying a reversal of the affinity trend among the reference and new nicotinic ligands under investigation.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/química , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Piridinas/farmacologia , Receptores Nicotínicos/química , Sítios de Ligação/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/síntese química , Ligantes , Estrutura Molecular , Piridinas/síntese química , Piridinas/química , Estereoisomerismo , Relação Estrutura-Atividade
19.
Bioorg Med Chem ; 20(21): 6344-55, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23022052

RESUMO

A group of spirocyclic tropanyl-Δ(2)-isoxazolines was synthesized exploiting the 1,3-dipolar cycloaddition of nitrile oxides to olefins. Their interaction with the dopamine and serotonin transporters (DAT and SERT, respectively) was evaluated through binding experiments. The majority of the compounds had no inhibitory effects (IC(50) >> 10 µM), while some had an IC(50) value in the range 5-10 µM (8a-c, 10b and 11c on DAT, 12b on SERT). Unexpectedly, one of the tertiary amines under investigation, that is 3'-methoxy-8-methyl-spiro{8-azabicyclo[3.2.1]octane-3,5'(4'H)-isoxazole 7a, was able to enhance at a concentration of 10 µM both [(3)H]citalopram and [(3)H]paroxetine binding to SERT in rat brain homogenate (up to 25%, due to an increase of B(max)) and [(3)H]serotonin uptake (up to 30%) in cortical synaptosomes. This peculiar pharmacological profile of 7a suggests it binds to an allosteric site on SERT, and positions derivative 7a as a very useful tool to investigate SERT machinery.


Assuntos
Citalopram/farmacologia , Isoxazóis/farmacologia , Paroxetina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Serotonina/farmacocinética , Compostos de Espiro/farmacologia , Animais , Sítios de Ligação/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Citalopram/química , Proteínas da Membrana Plasmática de Transporte de Dopamina/antagonistas & inibidores , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Relação Dose-Resposta a Droga , Isoxazóis/síntese química , Isoxazóis/química , Estrutura Molecular , Paroxetina/química , Ratos , Serotonina/química , Compostos de Espiro/síntese química , Compostos de Espiro/química , Relação Estrutura-Atividade , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo
20.
Chirality ; 24(7): 543-51, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22566097

RESUMO

Epiboxidine hydrochlorides (+)-2 and (-)-2, which are the structural analogs of the antipodes of epibatidine (±)-1, as well as the enantiomeric pairs (+)-3/(-)-3 and (+)-4/(-)-4 were synthesized and tested for binding affinity at α4ß2 and α7 nicotinic acetylcholine receptor (nAChR) subtypes. Final derivatives were prepared through the condensation of racemic N-Boc-7-azabicyclo[2.2.1]heptane-2-one (±)-5 with the resolving agent (R)-(+)-2-methyl-2-propanesulfinamide. The pharmacological analysis carried out on the three new enantiomeric pairs evidenced an overall negligible degree of enantioselectivity at both nAChRs subtypes, a result similar to that reported for both natural and unnatural epibatidine enantiomers at the same investigated receptor subtypes.


Assuntos
Isoxazóis/síntese química , Isoxazóis/metabolismo , Neurônios/metabolismo , Receptores Nicotínicos/metabolismo , Animais , Técnicas de Química Sintética , Isoxazóis/química , Ligação Proteica , Ratos , Estereoisomerismo , Receptor Nicotínico de Acetilcolina alfa7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA