Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neuroinflammation ; 19(1): 280, 2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36403004

RESUMO

Microglia are involved in neuroinflammatory processes during diverse pathophysiological conditions. To date, the possible contribution of these cells to deoxynivalenol (DON)-induced brain inflammation and anorexia has not yet been evaluated. DON, one of the most abundant trichothecenes found in cereals, has been implicated in mycotoxicosis in both humans and farm animals. DON-induced toxicity is characterized by reduced food intake, weight gain, and immunological effects. We previously showed that exposure to DON induces an inflammatory response within the hypothalamus and dorsal vagal complex (DVC) which contributes to DON-induced anorexia. Here, in response to anorectic DON doses, we reported microglial activation within two circumventricular organs (CVOs), the area postrema (AP) and median eminence (ME) located in the DVC and the hypothalamus, respectively. Interestingly, this microglial activation was observed while DON-induced anorexia was ongoing (i.e., 3 and 6 h after DON administration). Next, we took advantage of pharmacological microglia deletion using PLX3397, a colony-stimulating factor 1 receptor (CSF1R)-inhibitor. Surprisingly, microglia-depleted mice exhibited an increased sensitivity to DON since non-anorectic DON doses reduced food intake in PLX3397-treated mice. Moreover, low DON doses induced c-Fos expression within feeding behavior-associated structures in PLX3397-treated mice but not in control mice. In parallel, we have highlighted heterogeneity in the phenotype of microglial cells present in and around the AP and ME of control animals. In these areas, microglial subpopulations expressed IBA1, TMEM119, CD11b and CD68 to varying degrees. In addition, a CD68 positive subpopulation showed, under resting conditions, a noticeable phagocytotic/endocytotic activity. We observed that DON strongly reduced CD68 in the hypothalamus and DVC. Finally, inactivation of constitutively active microglia by intraperitoneal administration of minocycline resulted in anorexia with a DON dose ineffective in control mice. Taken together, these results strongly suggest that various populations of microglial cells residing in and around the CVOs are maintained in a functionally active state even under physiological conditions. We propose that these microglial cell populations are attempting to protect the brain parenchyma from hazardous molecules coming from the blood. This study could contribute to a better understanding of how microglia respond to environmental contaminants.


Assuntos
Anorexia , Tricotecenos , Humanos , Animais , Camundongos , Anorexia/induzido quimicamente , Microglia , Tricotecenos/toxicidade
2.
Brain Behav Immun ; 37: 54-72, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24355099

RESUMO

T-2 toxin is one of the most toxic Fusarium-derived trichothecenes found on cereals and constitutes a widespread contaminant of agricultural commodities as well as commercial foods. Low doses toxicity is characterized by reduced weight gain. To date, the mechanisms by which this mycotoxin profoundly modifies feeding behavior remain poorly understood and more broadly the effects of T-2 toxin on the central nervous system (CNS) have received limited attention. Through an extensive characterization of sickness-like behavior induced by T-2 toxin, we showed that its per os (p.o.) administration affects not only feeding behavior but also energy expenditure, glycaemia, body temperature and locomotor activity. Using c-Fos expression mapping, we identified the neuronal structures activated in response to T-2 toxin and observed that the pattern of neuronal populations activated by this toxin resembled that induced by inflammatory signals. Interestingly, part of neuronal pathways activated by the toxin were NUCB-2/nesfatin-1 expressing neurons. Unexpectedly, while T-2 toxin induced a strong peripheral inflammation, the brain exhibited limited inflammatory response at a time point when anorexia was ongoing. Unilateral vagotomy partly reduced T-2 toxin-induced brainstem neuronal activation. On the other hand, intracerebroventricular (icv) T-2 toxin injection resulted in a rapid (<1h) reduction in food intake. Thus, we hypothesized that T-2 toxin could signal to the brain through neuronal and/or humoral pathways. The present work provides the first demonstration that T-2 toxin modifies feeding behavior by interfering with central neuronal networks devoted to central energy balance. Our results, with a particular attention to peripheral inflammation, strongly suggest that inflammatory mediators partake in the T-2 toxin-induced anorexia and other symptoms. In view of the broad human and breeding animal exposure to T-2 toxin, this new mechanism may lead to reconsider the impact of the consumption of this toxin on human health.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Metabolismo Energético/efeitos dos fármacos , Toxina T-2/toxicidade , Animais , Antioxidantes/metabolismo , Glicemia/análise , Calorimetria , Comportamento Alimentar/efeitos dos fármacos , Comportamento de Doença/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Estresse Oxidativo , Baço/metabolismo
3.
J Physiol ; 590(16): 3719-41, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22570378

RESUMO

Cerebrospinal fluid (CSF) contacting neurones have been observed in various brain regions such as the hypothalamus, the dorsal nucleus of the raphe and around the central canal (cc) of the spinal cord but their functional role remains unclear. At the level of the spinal cord, subependymal cerebrospinal fluid contacting neurones (S-CSF-cNs) present a peculiar morphology with a soma close to the ependymal layer, a process projecting towards the cc and ending with a bud and a cilium. These neurones were recently shown to express polycystin kidney disease 2-like 1 (PKD2L1 or TRPP3) channels that are members of the polycystin subtype of the transient receptor potential (TRP) channel superfamily and that have been proposed as either chemo- or mechanoreceptors in several tissues. Using immunohistological techniques and whole-cell electrophysiological recordings in brain slices obtained from PKD2L1:EGFP transgenic adult mice, we looked for and determined the functional properties of S-CSF-cNs in the dorsal vagal complex (DVC), a hindbrain structure controlling autonomic functions such as blood pressure, energy balance and food intake. Here, we demonstrate that S-CSF-cNs received GABAergic and/or glycinergic synaptic entries and were also characterised by the presence of non-selective cationic channels of large conductance that could be detected even under whole-cell configuration. The channel activity was not affected by Psalmopoeus cambridgei toxin 1, a blocker of acid sensing ion channels (ASICs), but was blocked by amiloride and by a strong extracellular acidification. In contrast, extracellular alkalinisation and hypo-osmotic shocks increased channel activity. Based on these properties, we suggest that the single-channel activity recorded in medullar S-CSF-cNs is carried by PKD2L1 channels. Our study therefore reinforces the idea that PKD2L1 is a marker of S-CSF-cNs and points toward a role for S-CSF-cNs in the detection of circulating signals and of modifications in the extracellular environment.


Assuntos
Tronco Encefálico/citologia , Líquido Cefalorraquidiano/química , Neurônios/fisiologia , Potenciais de Ação , Animais , Fenômenos Eletrofisiológicos , Regulação da Expressão Gênica/fisiologia , Genótipo , Glicina/metabolismo , Proteínas de Fluorescência Verde , Camundongos , Camundongos Transgênicos , Neurônios/citologia , Transdução de Sinais , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo , Técnicas de Cultura de Tecidos , Ácido gama-Aminobutírico/metabolismo
4.
Sci Rep ; 10(1): 12072, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32694515

RESUMO

The ribotoxin deoxynivalenol (DON) is a trichothecene found on cereals responsible for mycotoxicosis in both humans and farm animals. DON toxicity is characterized by reduced food intake, diminished nutritional efficiency and immunologic effects. The present study was designed to further characterize the alterations in energy metabolism induced by DON intoxication. We demonstrated that acute DON intoxication triggered liver steatosis associated with an altered expression of genes related to lipids oxidation, lipogenesis and lipolysis. This steatosis was concomitant to anorexia, hypoglycemia and a paradoxical transient insulin release. DON treatment resulted also in stimulation of central autonomic network regulating sympathetic outflow and adrenaline and glucocorticoids secretion. Furthermore, an increased expression of genes linked to inflammation and reticulum endoplasmic stress was observed in the liver of DON-treated mice. Finally, we propose that lipids mobilization from adipose tissues (AT) induced by DON intoxication drives hepatic steatosis since (1) genes encoding lipolytic enzymes were up-regulated in AT and (2) plasma concentration of triglycerides (TGs) and non-esterified fatty acids were increased during DON intoxication. Altogether, these data demonstrate that DON induced hormonal and metabolic dysregulations associated with a spectrum of hepatic abnormalities, evocative of a non-alcoholic fatty liver disease.


Assuntos
Ração Animal , Metabolismo Energético/efeitos dos fármacos , Contaminação de Alimentos , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Tricotecenos/efeitos adversos , Ração Animal/análise , Animais , Biomarcadores , Citocinas , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático , Ácidos Graxos/metabolismo , Glicogênio , Hormônios/metabolismo , Imuno-Histoquímica , Mediadores da Inflamação , Metabolismo dos Lipídeos , Lipólise , Fígado/metabolismo , Masculino , Camundongos , Hepatopatia Gordurosa não Alcoólica/patologia , Oxirredução
5.
Cells ; 9(11)2020 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-33142723

RESUMO

The metabolic syndrome, which comprises obesity and diabetes, is a major public health problem and the awareness of energy homeostasis control remains an important worldwide issue. The energy balance is finely regulated by the central nervous system (CNS), notably through neuronal networks, located in the hypothalamus and the dorsal vagal complex (DVC), which integrate nutritional, humoral and nervous information from the periphery. The glial cells' contribution to these processes emerged few year ago. However, its underlying mechanism remains unclear. Glial connexin 43 hemichannels (Cx43 HCs) enable direct exchange with the extracellular space and can regulate neuronal network activity. In the present study, we sought to determine the possible involvement of glial Cx43 HCs in energy balance regulation. We here show that Cx43 is strongly expressed in the hypothalamus and DVC and is associated with glial cells. Remarkably, we observed a close apposition of Cx43 with synaptic elements in both the hypothalamus and DVC. Moreover, the expression of hypothalamic Cx43 mRNA and protein is modulated in response to fasting and diet-induced obesity. Functionally, we found that Cx43 HCs are largely open in the arcuate nucleus (ARC) from acute mice hypothalamic slices under basal condition, and significantly inhibited by TAT-GAP19, a mimetic peptide that specifically blocks Cx43 HCs activity. Moreover, intracerebroventricular (i.c.v.) TAT-GAP19 injection strongly decreased food intake, without further alteration of glycaemia, energy expenditures or locomotor activity. Using the immediate early gene c-Fos expression, we found that i.c.v. TAT-GAP19 injection induced neuronal activation in hypothalamic and brainstem nuclei dedicated to food intake regulation. Altogether, these results suggest a tonic delivery of orexigenic molecules associated with glial Cx43 HCs activity and a possible modulation of this tonus during fasting and obesity.


Assuntos
Conexina 43/metabolismo , Conexina 43/fisiologia , Ingestão de Alimentos , Síndrome Metabólica/metabolismo , Neuroglia/fisiologia , Fragmentos de Peptídeos/fisiologia , Animais , Astrócitos/metabolismo , Conexina 43/síntese química , Conexina 43/genética , Metabolismo Energético , Células Ependimogliais/metabolismo , Regulação da Expressão Gênica , Homeostase/efeitos dos fármacos , Hipotálamo/metabolismo , Masculino , Síndrome Metabólica/genética , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Fragmentos de Peptídeos/síntese química , Proteínas Proto-Oncogênicas c-fos/metabolismo , Núcleo Solitário/metabolismo
6.
Mol Neurobiol ; 57(8): 3307-3333, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32519243

RESUMO

Research on energy homeostasis has focused on neuronal signaling; however, the role of glial cells has remained little explored. Glial endozepines exert anorexigenic actions by mechanisms which remain poorly understood. In this context, the present study was designed to decipher the mechanisms underlying the anorexigenic action of endozepines and to investigate their potential curative effect on high-fat diet-induced obesity. We carried out a combination of physiological, pharmacological, and molecular analyses together to dissect the underlying mechanisms of endozepine-induced hypophagia. To evaluate the potential anti-obesity effect of endozepines, different model of obesity were used, i.e., ob/ob and diet-induced obese mice. We show that the intracerebral administration of endozepines enhances satiety by targeting anorexigenic brain circuitry and induces STAT3 phosphorylation, a hallmark of leptin signaling. Strikingly, endozepines are entirely ineffective at reducing food intake in the presence of a circulating leptin antagonist and in leptin-deficient mice (ob/ob) but potentiate the reduced food intake and weight loss induced by exogenous leptin administration in these animals. Endozepines reversed high fat diet-induced obesity by reducing food intake and restored leptin-induced STAT3 phosphorylation in the hypothalamus. Interestingly, we observed that glucose and insulin synergistically enhance tanycytic endozepine expression and release. Finally, endozepines, which induce ERK activation necessary for leptin transport into the brain in cultured tanycytes, require tanycytic leptin receptor expression to promote STAT3 phosphorylation in the hypothalamus. Our data identify endozepines as potential anti-obesity compounds in part through the modulation of the LepR-ERK-dependent tanycytic leptin shuttle.


Assuntos
Inibidor da Ligação a Diazepam/metabolismo , Dieta Hiperlipídica , Hipotálamo/metabolismo , Leptina/metabolismo , Neuroglia/metabolismo , Obesidade/metabolismo , Animais , Ingestão de Alimentos/fisiologia , Metabolismo Energético/fisiologia , Homeostase/fisiologia , Leptina/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Obesos
7.
Neurobiol Dis ; 35(2): 201-8, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19410647

RESUMO

Recent data show that hormone replacement therapy, involving estrogen together with progestin, can promote hearing loss (Guimaraes, P., Frisina, S.T., Mapes, F., Tadros, S.F., Frisina, D.R. and Frisina, R.D., 2006. Progestin negatively affects hearing in aged women. Proc. Natl. Acad. Sci. USA. 103, 14246-14249.). But long-term estradiol treatment, which induces hyperprolactinemia in guinea pigs, results in hearing loss and bone dysmorphology of the otic capsule-without much hair cell loss (Horner, K.C., Cazals, Y., Guieu, R., Lenoir, M. and Sauze, N., 2007. Experimental estrogen-induced hyperprolactinemia results in bone-related hearing loss in the guinea pig. Am. J. Physiol., Endocrinol. Metab. 293, E1224-1232.). Since estrogen receptor beta can protect the mouse cochlea against acoustic trauma (Meltser, I., Tahera, Y., Simpson, E., Hultcrantz, M., Charitidi, K., Gustafsson, J.A. and Canlon, B., 2008. Estrogen receptor beta protects against acoustic trauma in mice. J. Clin. Invest. 118, 1563-1570.), we hypothesized that estradiol might activate protective glial-like elements in the inner ear. Immunohistochemistry showed down-regulation of vimentin within the lateral wall and upregulation within the spiral limbus. Glial fibrillary acid protein was increased in the inner sulcus, Hensen cells and Claudius cells. Furthermore, there was increased expression of vimentin in type II cells of the spiral ganglion and type I vestibular hair cells. The observations suggested that estradiol treatment may affect the inner ear ionic homeostasis but protection may be afforded via activated intermediate filaments.


Assuntos
Orelha Interna/efeitos dos fármacos , Orelha Interna/metabolismo , Estradiol/farmacologia , Estrogênios/farmacologia , Proteína Glial Fibrilar Ácida/metabolismo , Vimentina/metabolismo , Animais , Epitélio/efeitos dos fármacos , Epitélio/metabolismo , Feminino , Cobaias , Imuno-Histoquímica , Filamentos Intermediários/metabolismo , Masculino , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Órgão Espiral/efeitos dos fármacos , Órgão Espiral/metabolismo , Gânglio Espiral da Cóclea/efeitos dos fármacos , Gânglio Espiral da Cóclea/metabolismo
8.
J Neuroinflammation ; 6: 27, 2009 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-19778412

RESUMO

Recently, a novel factor with anorexigenic properties was identified and called nesfatin-1. This protein (82 aac) is not only expressed in peripheral organs but it is also found in neurons located in specific structures including the hypothalamus and the brainstem, two sites strongly involved in food intake regulation. Here, we studied whether some of the neurons that become activated following an injection of an anorectic dose of lipopolysaccharides (LPS) exhibit a nesfatin-1 phenotype. To this end, we used double immunohistochemistry to target the expression of the immediate-early gene c-fos and of nesfatin-1 on coronal frozen sections of the rat brain. The number of c-Fos+/nesfatin-1+ neurons was evaluated in the immunosensitive structures reported to contain nesfatin-1 neurons; i.e. paraventricular hypothalamic nucleus (PVN), supraoptic nucleus (SON), arcuate nucleus (ARC) and nucleus of the solitary tract (NTS). LPS strongly increased the number of c-Fos+/nesfatin-1+ neurons in the PVN, SON and NTS, and to a lesser extent in the ARC. Triple labeling showed that a portion of the nesfatin-1 neurons activated in response to LPS within the NTS are catecholaminergic since they co-express tyrosine hydroxylase (TH). Our data therefore indicate that a portion of nesfatin-1 neurons of both the hypothalamus and brainstem are sensitive to peripheral inflammatory signals, and provide the first clues suggesting that centrally released nesfatin-1 may contribute to the neural mechanisms leading to endotoxaemic anorexia.


Assuntos
Inflamação/fisiopatologia , Lipopolissacarídeos , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Animais , Anorexia/induzido quimicamente , Encéfalo/anatomia & histologia , Encéfalo/metabolismo , Proteínas de Ligação ao Cálcio , Proteínas de Ligação a DNA , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/farmacologia , Masculino , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Nucleobindinas , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Wistar
9.
Brain Res ; 1711: 173-182, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30703370

RESUMO

Nesfatin-1, an 82-amino acid peptide encoded by the secreted precursor nucleobinin-2 (NUCB2), exerts potent anorexigenic action independently of leptin signaling. This propensity has propelled this peptide and its analogues as potential anti-obesity drug candidates. However, a more extensive comprehension of its biological actions is needed prior to envisaging its potential use in the treatment of metabolic diseases. Swallowing is an essential motor component of ingestive behavior, which induces the propulsion of the alimentary bolus from the mouth to the esophagus. The dorsal swallowing group (DSG) which constitutes a part of the central pattern generator of swallowing (SwCPG) is located within the solitary tract nucleus (STN), a region reported to contain nesfatin-1/NUCB2 expressing neurons. In this context, we investigate here the possible effects of nesfatin-1 on swallowing discharge. Nesfatin-1 dose-dependently inhibited swallowing reflex and activated neurons located in the DSG region. In addition, we provide evidences that strongly suggest that this nesfatin-1 inhibitory effect involved an oxytocinergic relay. Indeed, oxytocin (OT) injection at the brainstem level inhibited swallowing reflex and OT receptor antagonist prevented nesfatin-1 inhibitory action. Altogether, these data constitute the first demonstration that nesfatin-1 modulates swallowing reflex by acting at the brainstem level via an oxytocinergic relay.


Assuntos
Geradores de Padrão Central/fisiologia , Deglutição/fisiologia , Nucleobindinas/fisiologia , Ocitocina/fisiologia , Reflexo/fisiologia , Animais , Tronco Encefálico/fisiologia , Geradores de Padrão Central/efeitos dos fármacos , Deglutição/efeitos dos fármacos , Relação Dose-Resposta a Droga , Estimulação Elétrica , Eletrocardiografia , Eletromiografia , Frequência Cardíaca/efeitos dos fármacos , Frequência Cardíaca/fisiologia , Injeções , Nervos Laríngeos/fisiologia , Masculino , Microinjeções , Nucleobindinas/farmacologia , Ocitocina/farmacologia , Ratos , Ratos Wistar , Receptores de Ocitocina/antagonistas & inibidores , Receptores de Ocitocina/fisiologia , Reflexo/efeitos dos fármacos , Taxa Respiratória/efeitos dos fármacos , Taxa Respiratória/fisiologia , Núcleo Solitário/fisiologia , Vasotocina/farmacologia
10.
J Clin Invest ; 115(12): 3545-53, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16322792

RESUMO

Ripglut1;glut2-/- mice have no endogenous glucose transporter type 2 (glut2) gene expression but rescue glucose-regulated insulin secretion. Control of glucagon plasma levels is, however, abnormal, with fed hyperglucagonemia and insensitivity to physiological hypo- or hyperglycemia, indicating that GLUT2-dependent sensors control glucagon secretion. Here, we evaluated whether these sensors were located centrally and whether GLUT2 was expressed in glial cells or in neurons. We showed that ripglut1;glut2-/- mice failed to increase plasma glucagon levels following glucoprivation induced either by i.p. or intracerebroventricular 2-deoxy-D-glucose injections. This was accompanied by failure of 2-deoxy-D-glucose injections to activate c-Fos-like immunoreactivity in the nucleus of the tractus solitarius and the dorsal motor nucleus of the vagus. When glut2 was expressed by transgenesis in glial cells but not in neurons of ripglut1;glut2-/- mice, stimulated glucagon secretion was restored as was c-Fos-like immunoreactive labeling in the brainstem. When ripglut1;glut2-/- mice were backcrossed into the C57BL/6 genetic background, fed plasma glucagon levels were also elevated due to abnormal autonomic input to the alpha cells; glucagon secretion was, however, stimulated by hypoglycemic stimuli to levels similar to those in control mice. These studies identify the existence of central glucose sensors requiring glut2 expression in glial cells and therefore functional coupling between glial cells and neurons. These sensors may be activated at different glycemic levels depending on the genetic background.


Assuntos
Astrócitos/metabolismo , Regulação da Expressão Gênica , Glucagon/metabolismo , Transportador de Glucose Tipo 2/genética , Transportador de Glucose Tipo 2/fisiologia , Glucose/metabolismo , Animais , Glicemia/metabolismo , Northern Blotting , Southern Blotting , Western Blotting , DNA Complementar/metabolismo , Desoxiglucose/química , Glucagon/sangue , Glucagon/química , Células Secretoras de Glucagon/metabolismo , Transportador de Glucose Tipo 2/metabolismo , Hipoglicemia/patologia , Imuno-Histoquímica , Insulina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Biológicos , Modelos Genéticos , Neuroglia/metabolismo , Neuroglia/patologia , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Fatores de Tempo , Transgenes
11.
Front Physiol ; 9: 1358, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30333759

RESUMO

Chronic low-grade inflammation is known to be linked to obesity, and to occur in the early stages of the disease. This mechanism is complex and involves numerous organs, cells, and cytokines. In this context, inflammation of white adipose tissue seems to play a key role in the development of obesity. Because of its properties, prostaglandin E2 (PGE2), an emblematic inflammatory mediator, has been proposed as an actor linking inflammation and obesity. Indeed, PGE2 is involved in mechanisms that are dysregulated in obesity such as lipolysis and adipogenesis. Microsomal prostaglandin E synthase-1 (mPGES-1) is an enzyme, which specifically catalyzes the final step of PGE2 biosynthesis. Interestingly, mPGES-1 invalidation dramatically alters the production of PGE2 during inflammation. In the present work, we sought to determine whether mPGES-1 could contribute to inflammation associated with obesity. To this end, we analyzed the energy metabolism of mPGES-1 deficient mice (mPGES-1-/-) and littermate controls, fed with a high-fat diet. Our data showed that mPGES-1-/- mice exhibited resistance to diet-induced obesity when compared to wild-type littermates. mPGES-1-/- mice fed with a high-fat diet, showed a lower body weight gain and a reduced adiposity, which were accompanied by a decrease in adipose tissues inflammation. We also observed an increase in energy expenditures in mPGES-1-/- mice fed with a high-fat diet without any changes in activity and browning process. Altogether, these data suggest that mPGES-1 inhibition may prevent diet-induced obesity.

12.
Diabetes ; 55(4): 988-95, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16567520

RESUMO

A role for glucose in the control of feeding has been proposed, but its precise physiological importance is unknown. Here, we evaluated feeding behavior in glut2-null mice, which express a transgenic glucose transporter in their beta-cells to rescue insulin secretion (ripglut1;glut2-/- mice). We showed that in the absence of GLUT2, daily food intake was increased and feeding initiation and termination following a fasting period were abnormal. This was accompanied by suppressed regulation of hypothalamic orexigenic and anorexigenic neuropeptides expression during the fast-to-refed transition. In these conditions, however, there was normal regulation of the circulating levels of insulin, leptin, or glucose but a loss of regulation of plasma ghrelin concentrations. To evaluate whether the abnormal feeding behavior was due to suppressed glucose sensing, we evaluated feeding in response to intraperitoneal or intracerebroventricular glucose or 2-deoxy-D-glucose injections. We showed that in GLUT2-null mice, feeding was no longer inhibited by glucose or activated by 2-deoxy-D-glucose injections and the regulation of hypothalamic neuropeptide expression by intracerebroventricular glucose administration was lost. Together, these data demonstrate that absence of GLUT2 suppressed the function of central glucose sensors, which control feeding probably by regulating the hypothalamic melanocortin pathway. Furthermore, inactivation of these glucose sensors causes overeating.


Assuntos
Comportamento Alimentar/fisiologia , Transportador de Glucose Tipo 2/fisiologia , Animais , Sequência de Bases , Primers do DNA , Grelina , Transportador de Glucose Tipo 2/deficiência , Transportador de Glucose Tipo 2/genética , Hipotálamo/fisiologia , Insulina/sangue , Leptina/sangue , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuropeptídeos/genética , Hormônios Peptídicos/sangue , Pró-Opiomelanocortina/genética , RNA Mensageiro/genética , RNA Mensageiro/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , alfa-MSH/fisiologia
13.
J Comp Neurol ; 501(3): 353-68, 2007 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-17245710

RESUMO

The dorsal vagal complex (DVC), an integrative center of autonomic functions located dorsally in the caudal brainstem, comprises the nucleus tractus solitarius (NTS), the area postrema (AP), and the dorsal motor nucleus of the vagus nerve (DMNX). Recently, this area of the brainstem was shown to retain, during adulthood, the expression of developmental markers, which is consistent with several forms of morphological and functional plasticity. These data led us to attempt to determine the structural organization and phenotypical characteristics of the astroglial compartment in the adult DVC. We report a strikingly high density of glial fibrillary acidic protein (GFAP) immunoreactive cells in the NTS and the DMNX compared to other brainstem structures. Furthermore, we observed a subpopulation of atypical GFAP+ cells in the NTS. These cells expressed vimentin and nestin and displayed unbranched processes that radiate rostrocaudally from cuboid cell bodies located in the 4th ventricle wall. Interestingly, these radiating cells were found in close association with neural progenitors whose proliferation was stimulated by intracerebroventricular injection of epidermal growth factor/basic fibroblast growth factor or lesion of the vagus nerve. Newly born neurons in the NTS identified by doublecortin (DCX) immunolabeling were also preferentially found in the vicinity of the radiating cells. Altogether, these results indicate that the adult NTS retains, during adulthood, astroglial cells that display morphological and phenotypical features seen during development. The overlap in the distribution of proliferative neural progenitors, newborn neurons, and radiating GFAP-positive cells suggest a possible role of the glial compartment of the NTS in functional plasticity in this structure.


Assuntos
Astrócitos/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Neurônios/metabolismo , Núcleo Solitário/metabolismo , Células-Tronco/metabolismo , Animais , Astrócitos/citologia , Biomarcadores/metabolismo , Proliferação de Células , Proteína Duplacortina , Imuno-Histoquímica , Proteínas de Filamentos Intermediários/metabolismo , Masculino , Proteínas do Tecido Nervoso/metabolismo , Nestina , Neurônios/citologia , Ratos , Ratos Wistar , Núcleo Solitário/citologia , Células-Tronco/citologia , Vimentina/metabolismo
14.
Front Neurosci ; 11: 308, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28611581

RESUMO

Endozepines are endogenous ligands for the benzodiazepine receptors and also target a still unidentified GPCR. The endozepine octadecaneuropeptide (ODN), an endoproteolytic processing product of the diazepam-binding inhibitor (DBI) was recently shown to be involved in food intake control as an anorexigenic factor through ODN-GPCR signaling and mobilization of the melanocortinergic signaling pathway. Within the hypothalamus, the DBI gene is mainly expressed by non-neuronal cells such as ependymocytes, tanycytes, and protoplasmic astrocytes, at levels depending on the nutritional status. Administration of ODN C-terminal octapeptide (OP) in the arcuate nucleus strongly reduces food intake. Up to now, the relevance of extrahypothalamic targets for endozepine signaling-mediated anorexia has been largely ignored. We focused our study on the dorsal vagal complex located in the caudal brainstem. This structure is strongly involved in the homeostatic control of food intake and comprises structural similarities with the hypothalamus. In particular, a circumventricular organ, the area postrema (AP) and a tanycyte-like cells forming barrier between the AP and the adjacent nucleus tractus solitarius (NTS) are present. We show here that DBI is highly expressed by ependymocytes lining the fourth ventricle, tanycytes-like cells, as well as by proteoplasmic astrocytes located in the vicinity of AP/NTS interface. ODN staining observed at the electron microscopic level reveals that ODN-expressing tanycyte-like cells and protoplasmic astrocytes are sometimes found in close apposition to neuronal elements such as dendritic profiles or axon terminals. Intracerebroventricular injection of ODN or OP in the fourth ventricle triggers c-Fos activation in the dorsal vagal complex and strongly reduces food intake. We also show that, similarly to leptin, ODN inhibits the swallowing reflex when microinjected into the swallowing pattern generator located in the NTS. In conclusion, we hypothesized that ODN expressing cells located at the AP/NTS interface could release ODN and modify excitability of NTS neurocircuitries involved in food intake control.

15.
Neurotoxicology ; 49: 15-27, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25956358

RESUMO

Trichothecenes are toxic metabolites produced by fungi that constitute a worldwide hazard for agricultural production and both animal and human health. More than 40 countries have introduced regulations or guidelines for food and feed contamination levels of the most prevalent trichothecene, deoxynivalenol (DON), on the basis of its ability to cause growth suppression. With the development of analytical tools, evaluation of food contamination and exposure revealed that a significant proportion of the human population is chronically exposed to DON doses exceeding the provisional maximum tolerable daily dose. Accordingly, a better understanding of trichothecene impact on health is needed. Upon exposure to low or moderate doses, DON and other trichothecenes induce anorexia, vomiting and reduced weight gain. Several recent studies have addressed the mechanisms by which trichothecenes induce these symptoms and revealed a multifaceted action targeting gut, liver and brain and causing dysregulation in neuroendocrine signaling, immune responses, growth hormone axis, and central neurocircuitries involved in energy homeostasis. Newly identified trichothecene toxicosis biomarkers are just beginning to be exploited and already open up new questions on the potential harmful effects of chronic exposure to DON at apparently asymptomatic very low levels. This review summarizes our current understanding of the effects of DON and other trichothecenes on food intake and weight growth.


Assuntos
Anorexia/induzido quimicamente , Metabolismo Energético/efeitos dos fármacos , Doenças Metabólicas/induzido quimicamente , Micotoxinas/intoxicação , Tricotecenos/intoxicação , Animais , Citocinas/metabolismo , Metabolismo Energético/fisiologia , Humanos
16.
Toxicol Lett ; 232(3): 601-11, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25549547

RESUMO

SCOPE: Deoxynivalenol (DON) is the most common fungi toxin contaminating cereals and cereal-derived products. High consumption of DON is implicated in mycotoxicoses and causes a set of symptoms including diarrhea, vomiting, reduced weight gain or immunologic effects. However, such clinical intoxications are rare in humans, who are most frequently, exposed to low DON doses without developing acute symptoms. The adverse effect of chronically consumed low DON doses can not be totally excluded. Using a mouse model, we evaluated the impact on inflammatory status of subchronic administration of DON given at doses comparable to the daily human consumption. METHODS AND RESULTS: The inflammatory status was evaluated in mice receiving 1, 2.5 or 25µg/kg bw/day DON during a 10 or 30 days period. The systemic interleukin-1 beta (IL-1ß) concentrations were evaluated by Elisa and inflammatory biomarker mRNA expressions were quantified by qPCR within brain structures and peripheral organs. While DON intake failed to modify physiological markers, we observed a systemic IL-1ß increase and a modulation of pro-inflammatory gene expression in brain structures, liver, duodenum and adipose tissue. CONCLUSION: We bring here the first evidence that subchronic DON intake, at doses that match daily human intake, induces, in a murine model, a central and peripheral low grade inflammation.


Assuntos
Inflamação/induzido quimicamente , Tricotecenos/toxicidade , Animais , Biomarcadores , Relação Dose-Resposta a Droga , Interleucina-1beta , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tricotecenos/administração & dosagem
17.
Front Cell Neurosci ; 9: 172, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25999818

RESUMO

The central nervous system (CNS) monitors modifications in metabolic parameters or hormone levels and elicits adaptive responses such as food intake regulation. Particularly, within the hypothalamus, leptin modulates the activity of pro-opiomelanocortin (POMC) neurons which are critical regulators of energy balance. Consistent with a pivotal role of the melanocortin system in the control of energy homeostasis, disruption of the POMC gene causes hyperphagia and obesity. MicroRNAs (miRNAs) are short noncoding RNA molecules that post-transcriptionally repress the expression of genes by binding to 3'-untranslated regions (3'UTR) of the target mRNAs. However, little is known regarding the role of miRNAs that target POMC 3'UTR in the central control energy homeostasis. Particularly, their interaction with the leptin signaling pathway remain unclear. First, we used common prediction programs to search for potential miRNAs target sites on 3'UTR of POMC mRNA. This screening identified a set of conserved miRNAs seed sequences for mir-383, mir-384-3p, and mir-488. We observed that mir-383, mir-384-3p, and mir-488 are up-regulated in the hypothalamus of leptin deficient ob/ob mice. In accordance with these observations, we also showed that mir-383, mir-384-3p, and mir-488 were increased in db/db mice that exhibit a non-functional leptin receptor. The intraperitoneal injection of leptin down-regulated the expression of these miRNAs of interest in the hypothalamus of ob/ob mice showing the involvement of leptin in the expression of mir-383, mir-384-3p, and mir-488. Finally, the evaluation of responsivity to intracerebroventricular administration of leptin exhibited that a chronic treatment with leptin decreased mir-488 expression in hypothalamus of C57BL/6 mice. In summary, these results suggest that leptin modulates the expression of miRNAs that target POMC mRNA in hypothalamus.

19.
Obesity (Silver Spring) ; 22(12): 2552-62, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25236366

RESUMO

OBJECTIVE: The study was designed to determine metformin effects on meal pattern, gastric emptying, energy expenditure, and to identify metformin-sensitive neurons and their phenotype. METHODS: This study was performed on C57BL/6J and obese/diabetic (db/db) mice. Metformin (300 mg/kg) was administered by oral gavage. Food intake, meal pattern, oxygen consumption (VO2 ), and carbon dioxide production (VCO2 ) were obtained using an Oxylet Physiocage System. Gastric emptying assay and real-time RT-PCR from dorsal vagal complex extracts were also performed. C-Fos expression was used as a marker of neuronal activation. Phenotypic characterization of activated neurons was performed using either proopiomelanocortin (POMC)-Tau-Topaz GFP transgenic mice or NUCB2/nesfatin-1 and tyrosine hydroxylase (TH) labeling. RESULTS: Acute per os metformin treatment slowed down gastric emptying, reduced meal size, but not meal number in a leptin-independent manner, and transiently decreased energy expenditure in a leptin-dependent manner. Metformin specifically activated central circuitry within the brainstem, independently of vagal afferents. Finally, while POMC neurons seemed sparsely activated, we report that a high proportion of the c-Fos positive cells were nesfatinergic neurons, some of which coexpressing TH. CONCLUSIONS: Altogether, these results show that metformin modifies satiation by activating brainstem circuitry and suggest that NUCB2/nesfatin-1 could be involved in this metformin effect.


Assuntos
Hipoglicemiantes/farmacologia , Metformina/farmacologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Saciação/efeitos dos fármacos , Animais , Regulação do Apetite/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Paladar/efeitos dos fármacos
20.
Pharm Pat Anal ; 2(3): 399-427, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-24237065

RESUMO

Type 2 diabetes (T2D) represents a significant global epidemic with more than 285 million people affected worldwide. Regulating glycemia in T2D patients can be partially achieved with currently available treatment, but intensive research during the last decades have led to the discovery of modified compounds or new targets that could represent great hope for safe and effective treatment in the future. Among them, targets in the CNS that are known to control feeding and body weight have been also shown to exert glucoregulatory actions, and could be a key in the development of a new generation of drugs in the field of T2D. Such drugs would be of great interest since they can be used both in the treatment of diabetes and obesity. This patent review aims to establish an overview of recent patents disclosing new therapeutic opportunities targeting peripheral, as well as central targets for the treatment of T2D.


Assuntos
Sistema Nervoso Central/fisiologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Animais , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Glucose/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA