Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
1.
Cereb Cortex ; 33(9): 5436-5446, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36368894

RESUMO

Behavioral and cognitive flexibility allow adaptation to a changing environment. Most tasks used to investigate flexibility require switching reactively in response to deterministic task-response rules. In daily life, flexibility often involves a volitional decision to change behavior. This can be instigated by environmental signals, but these are frequently unreliable. We report results from a novel "change your mind" task, which assesses volitional switching under uncertainty without the need for rule-based learning. Participants completed a two-alternative choice task, and following spurious feedback, were presented with the same stimulus again. Subjects had the opportunity to repeat or change their response. Forty healthy participants completed the task while undergoing a functional magnetic resonance imaging scan. Participants predominantly repeated their choice but changed more when their first response was incorrect or when the feedback was negative. Greater activations for changing were found in the inferior frontal junction, anterior insula (AI), anterior cingulate, and dorsolateral prefrontal cortex. Changing responses were also accompanied by reduced connectivity from the AI and orbitofrontal cortices to the occipital cortex. Using multivariate pattern analysis of brain activity, we predicted with 77% reliability whether participants would change their mind. These findings extend our understanding of cognitive flexibility in daily life by assessing volitional decision-making.


Assuntos
Encéfalo , Comportamento de Escolha , Cognição , Adolescente , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Algoritmos , Encéfalo/citologia , Encéfalo/fisiologia , Mapeamento Encefálico , Comportamento de Escolha/fisiologia , Cognição/fisiologia , Voluntários Saudáveis , Imageamento por Ressonância Magnética , Vias Neurais
2.
Behav Brain Funct ; 19(1): 19, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932782

RESUMO

Compulsivity is considered a transdiagnostic dimension in obsessive-compulsive and related disorders, characterized by heterogeneous cognitive and behavioral phenotypes associated with abnormalities in cortico-striatal-thalamic-cortical circuitry. The present study investigated the structural morphology of white and gray matter in rats selected for low- (LD) and high- (HD) compulsive drinking behavior on a schedule-induced polydipsia (SIP) task. Regional brain morphology was assessed using ex-vivo high-resolution magnetic resonance imaging (MRI). Voxel-based morphometry of segmented MRI images revealed larger white matter volumes in anterior commissure and corpus callosum of HD rats compared with LD rats. HD rats also showed significantly larger regional volumes of dorsolateral orbitofrontal cortex, striatum, amygdala, hippocampus, midbrain, sub-thalamic nucleus, and cerebellum. By contrast, the medial prefrontal cortex was significantly smaller in HD rats compared with LD rats with no significant group differences in whole brain, ventricular, or cerebrospinal fluid volumes. These findings show that limbic cortico-basal ganglia structures implicated in impulse control disorders are distinct in rats that are vulnerable to develop compulsive behavior. Such abnormalities may be relevant to the etiology of compulsive disorders in humans.


Assuntos
Encéfalo , Comportamento Compulsivo , Humanos , Ratos , Masculino , Animais , Encéfalo/patologia , Comportamento Compulsivo/psicologia , Tonsila do Cerebelo/patologia , Gânglios da Base , Fenótipo , Imageamento por Ressonância Magnética , Mapeamento Encefálico
3.
Exp Brain Res ; 241(2): 539-546, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36625968

RESUMO

Impulsive behaviour on the five-choice serial reaction time task (5CSRTT), a task measuring attention and impulsivity in rodents, is known to depend on dopamine (DA) neurotransmission in the mesolimbic DA pathway. Previous research in our lab reported that systemic administration of the D2/3 agonist quinpirole, which decreases DA release in the striatum, reduced premature responses in rats performing the 5CSRTT. It is unclear, however, whether this effect is mediated by the activation of inhibitory somatodendritic receptors in the ventral tegmental area (VTA), which in turn leads to a reduction in DA release in the nucleus accumbens, a major terminal region of the mesolimbic DA pathway. In the present study, we investigated this possibility by infusing quinpirole directly into the VTA of rats during performance on the 5CSRTT. We found that quinpirole, at the highest dose, significantly reduced the frequency of premature responses on the 5CSRTT. Thus, the effects of quinpirole and other D2/3 receptor agonists to reduce this form of impulsive behaviour appear to depend on the activation of somatodendritic D2/3 receptors in the VTA.


Assuntos
Agonistas de Dopamina , Comportamento Impulsivo , Quimpirol , Área Tegmentar Ventral , Animais , Ratos , Dopamina/metabolismo , Agonistas de Dopamina/farmacologia , Quimpirol/farmacologia , Tempo de Reação , Receptores de Dopamina D2/metabolismo , Área Tegmentar Ventral/metabolismo
4.
Nat Rev Neurosci ; 18(3): 158-171, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28209979

RESUMO

The ability to make decisions and act quickly without hesitation can be advantageous in many settings. However, when persistently expressed, impulsive decisions and actions are considered risky, maladaptive and symptomatic of such diverse brain disorders as attention-deficit hyperactivity disorder, drug addiction and affective disorders. Over the past decade, rapid progress has been made in the identification of discrete neural networks that underlie different forms of impulsivity - from impaired response inhibition and risky decision making to a profound intolerance of delayed rewards. Herein, we review what is currently known about the neural and psychological mechanisms of impulsivity, and discuss the relevance and application of these new insights to various neuropsychiatric disorders.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/metabolismo , Tomada de Decisões , Comportamento Impulsivo/fisiologia , Recompensa , Transtornos Relacionados ao Uso de Substâncias/metabolismo , Animais , Humanos , Risco
5.
Brain ; 144(6): 1661-1669, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-33760024

RESUMO

α-Synuclein aggregation at the synapse is an early event in Parkinson's disease and is associated with impaired striatal synaptic function and dopaminergic neuronal death. The cysteine string protein (CSPα) and α-synuclein have partially overlapping roles in maintaining synaptic function and mutations in each cause neurodegenerative diseases. CSPα is a member of the DNAJ/HSP40 family of co-chaperones and like α-synuclein, chaperones the SNARE complex assembly and controls neurotransmitter release. α-Synuclein can rescue neurodegeneration in CSPαKO mice. However, whether α-synuclein aggregation alters CSPα expression and function is unknown. Here we show that α-synuclein aggregation at the synapse is associated with a decrease in synaptic CSPα and a reduction in the complexes that CSPα forms with HSC70 and STGa. We further show that viral delivery of CSPα rescues in vitro the impaired vesicle recycling in PC12 cells with α-synuclein aggregates and in vivo reduces synaptic α-synuclein aggregates increasing monomeric α-synuclein and restoring normal dopamine release in 1-120hαSyn mice. These novel findings reveal a mechanism by which α-synuclein aggregation alters CSPα at the synapse, and show that CSPα rescues α-synuclein aggregation-related phenotype in 1-120hαSyn mice similar to the effect of α-synuclein in CSPαKO mice. These results implicate CSPα as a potential therapeutic target for the treatment of early-stage Parkinson's disease.


Assuntos
Corpo Estriado/metabolismo , Dopamina/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Membrana/metabolismo , Agregação Patológica de Proteínas/metabolismo , alfa-Sinucleína/metabolismo , Animais , Corpo Estriado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Agregação Patológica de Proteínas/patologia , Sinapses/metabolismo , Sinapses/patologia
6.
Cereb Cortex ; 31(2): 1090-1105, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33043981

RESUMO

Cross-species studies have identified an evolutionarily conserved role for serotonin in flexible behavior including reversal learning. The aim of the current study was to investigate the contribution of serotonin within the orbitofrontal cortex (OFC) and medial prefrontal cortex (mPFC) to visual discrimination and reversal learning. Male Lister Hooded rats were trained to discriminate between a rewarded (A+) and a nonrewarded (B-) visual stimulus to receive sucrose rewards in touchscreen operant chambers. Serotonin was depleted using surgical infusions of 5,7-dihydroxytryptamine (5,7-DHT), either globally by intracebroventricular (i.c.v.) infusions or locally by microinfusions into the OFC or mPFC. Rats that received i.c.v. infusions of 5,7-DHT before initial training were significantly impaired during both visual discrimination and subsequent reversal learning during which the stimulus-reward contingencies were changed (A- vs. B+). Local serotonin depletion from the OFC impaired reversal learning without affecting initial discrimination. After mPFC depletion, rats were unimpaired during reversal learning but slower to respond at the stimuli during all the stages; the mPFC group was also slower to learn during discrimination than the OFC group. These findings extend our understanding of serotonin in cognitive flexibility by revealing differential effects within two subregions of the prefrontal cortex in visual discrimination and reversal learning.


Assuntos
Aprendizagem por Discriminação/fisiologia , Córtex Pré-Frontal/metabolismo , Reversão de Aprendizagem/fisiologia , Neurônios Serotoninérgicos/metabolismo , Serotonina/metabolismo , Percepção Visual/fisiologia , 5,6-Di-Hidroxitriptamina/administração & dosagem , 5,6-Di-Hidroxitriptamina/análogos & derivados , 5,6-Di-Hidroxitriptamina/toxicidade , Animais , Creatinina/administração & dosagem , Creatinina/análogos & derivados , Creatinina/toxicidade , Aprendizagem por Discriminação/efeitos dos fármacos , Infusões Intraventriculares , Masculino , Estimulação Luminosa/métodos , Córtex Pré-Frontal/efeitos dos fármacos , Ratos , Reversão de Aprendizagem/efeitos dos fármacos , Neurônios Serotoninérgicos/efeitos dos fármacos , Percepção Visual/efeitos dos fármacos
7.
J Neurochem ; 157(5): 1525-1546, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33931861

RESUMO

Drug compulsion manifests in some but not all individuals and implicates multifaceted processes including failures in top-down cognitive control as drivers for the hazardous pursuit of drug use in some individuals. As a closely related construct, impulsivity encompasses rash or risky behaviour without foresight and underlies most forms of drug taking behaviour, including drug use during adverse emotional states (i.e., negative urgency). While impulsive behavioural dimensions emerge from drug-induced brain plasticity, burgeoning evidence suggests that impulsivity also predates the emergence of compulsive drug use. Although the neural substrates underlying the apparently causal relationship between trait impulsivity and drug compulsion are poorly understood, significant advances have come from the interrogation of defined limbic cortico-striatal circuits involved in motivated behaviour and response inhibition, together with chemical neuromodulatory influences from the ascending neurotransmitter systems. We review what is presently known about the neurochemical mediation of impulsivity, in its various forms, and ask whether commonalities exist in the neurochemistry of compulsive drug-motivated behaviours that might explain individual risk for addiction.


Assuntos
Comportamento Aditivo/fisiopatologia , Comportamento Aditivo/psicologia , Química Encefálica/fisiologia , Comportamento Compulsivo/fisiopatologia , Comportamento Compulsivo/psicologia , Comportamento Impulsivo , Neuroquímica , Neurotransmissores/fisiologia , Animais , Humanos , Transtornos Relacionados ao Uso de Substâncias
8.
Cereb Cortex ; 30(5): 3392-3402, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31897490

RESUMO

Maladaptive impulsivity manifests in a variety of disorders, including attention-deficit hyperactivity disorder (ADHD), depression, and substance use disorder. However, the etiological mechanisms of impulsivity remain poorly understood. In the present study, we used in-vivo proton magnetic resonance spectroscopy (1H-MRS) to investigate neurometabolite content in the prefrontal cortex (PFC) and striatum of rats exhibiting low- versus high-impulsive (LI, HI) behavior on a visual attentional task. We validated our 1H-MRS findings using regionally resolved ex-vivo mass spectroscopy, transcriptomics, and site-directed RNA interference in the ventromedial PFC. We report a significant reduction in myoinositol levels in the PFC but not the striatum of HI rats compared with LI rats. Reduced myoinositol content was localized to the infralimbic (IL) cortex, where significant reductions in transcript levels of key proteins involved in the synthesis and recycling of myoinositol (IMPase1) were also present. Knockdown of IMPase1in the IL cortex increased impulsivity in nonimpulsive rats when the demand on inhibitory response control was increased. We conclude that diminished myoinositol levels in ventromedial PFC causally mediate a specific form of impulsivity linked to vulnerability for stimulant addiction in rodents. Myoinositol and related signaling substrates may thus offer novel opportunities for treating neuropsychiatric disorders comorbid with impulsive symptomology.


Assuntos
Comportamento Impulsivo , Inositol/metabolismo , Monoéster Fosfórico Hidrolases/genética , Córtex Pré-Frontal/metabolismo , Animais , Atenção , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferase/genética , Endofenótipos , Técnicas de Silenciamento de Genes , Liases Intramoleculares/genética , Masculino , Proteínas de Membrana/genética , Córtex Pré-Frontal/diagnóstico por imagem , Espectroscopia de Prótons por Ressonância Magnética , Ratos , Simportadores/genética
9.
J Neurosci ; 39(16): 3094-3107, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30718320

RESUMO

High-trait anxiety is a risk factor for the development of affective disorders and has been associated with decreased cardiovascular and behavioral responsivity to acute stressors in humans that may increase the risk of developing cardiovascular disease. Although human neuroimaging studies of high-trait anxiety reveals dysregulation in primate cingulate areas 25 and 32 and the anterior hippocampus (aHipp) and rodent studies reveal the importance of aHipp glutamatergic hypofunction, the causal involvement of aHipp glutamate and its interaction with these areas in the primate brain is unknown. Accordingly, we correlated marmoset trait anxiety scores to their postmortem aHipp glutamate levels and showed that low glutamate in the right aHipp is associated with high-trait anxiety in marmosets. Moreover, pharmacologically increasing aHipp glutamate reduced anxiety levels in highly anxious marmosets in two uncertainty-based tests of anxiety: exposure to a human intruder with uncertain intent and unpredictable loud noise. In the human intruder test, increasing aHipp glutamate decreased anxiety by increasing approach to the intruder. In the unpredictable threat test, animals showed blunted behavioral and cardiovascular responsivity after control infusions, which was normalized by increasing aHipp glutamate. However, this aHipp-mediated anxiolytic effect was blocked by simultaneous pharmacological inactivation of area 25, but not area 32, areas which when inactivated independently reduced and had no effect on anxiety, respectively. These findings provide causal evidence in male and female primates that aHipp glutamatergic hypofunction and its regulation by area 25 contribute to the behavioral and cardiovascular symptoms of endogenous high-trait anxiety.SIGNIFICANCE STATEMENT High-trait anxiety predisposes sufferers to the development of anxiety and depression. Although neuroimaging of these disorders and rodent modeling implicate dysregulation in hippocampal glutamate and the subgenual/perigenual cingulate cortices (areas 25/32), the causal involvement of these structures in endogenous high-trait anxiety and their interaction are unknown. Here, we demonstrate that increased trait anxiety in marmoset monkeys correlates with reduced hippocampal glutamate and that increasing hippocampal glutamate release in high-trait-anxious monkeys normalizes the aberrant behavioral and cardiovascular responsivity to potential threats. This normalization was blocked by simultaneous inactivation of area 25, but not area 32. These findings provide casual evidence in primates that hippocampal glutamatergic hypofunction regulates endogenous high-trait anxiety and the hippocampal-area 25 circuit is a potential therapeutic target.


Assuntos
Ansiedade/metabolismo , Comportamento Animal/fisiologia , Ácido Glutâmico/metabolismo , Frequência Cardíaca/fisiologia , Hipocampo/metabolismo , Aminoácidos/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Benzilaminas/farmacologia , Callithrix , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Antagonistas de Receptores de GABA-A/farmacologia , Frequência Cardíaca/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Masculino , Ácidos Fosfínicos/farmacologia , Xantenos/farmacologia
10.
Hum Brain Mapp ; 41(8): 2216-2228, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32150321

RESUMO

Adequate control of impulsive urges to act is demanded in everyday life but is impaired in neuropsychiatric conditions such as stimulant use disorder. Despite intensive research it remains unclear whether failures in impulse control are caused by impaired suppression of behavior or by the over invigoration of behavior by stimuli associated with salient incentives such as drugs, food, and money. We investigated failures in impulse control using functional magnetic resonance imaging (fMRI) to map the neural correlates of premature (impulsive) responses during the anticipation phase of the Monetary Incentive Delay (MID) task in healthy controls (HC), stimulant-dependent individuals (SDIs), and their unaffected first-degree siblings (SIB). We combined task-based fMRI analyses with dynamic causal modeling to show that failures of impulse control were associated with interactions between cingulo-opercular and dorsal striatal networks regardless of group status and incentive type. We further report that group-specific incentive salience plays a critical role in modulating impulsivity in SDIs since drug-related incentives specifically increased premature responding and shifted task modulation away from the dorsal striatal network to the cingulo-opercular network. Our findings thus indicate that impulsive actions are elicited by salient personally-relevant incentive stimuli and those such slips of action recruit a distinct fronto-striatal network.


Assuntos
Mapeamento Encefálico , Giro do Cíngulo/fisiologia , Comportamento Impulsivo/fisiologia , Motivação/fisiologia , Neostriado/fisiologia , Rede Nervosa/fisiologia , Personalidade/fisiologia , Córtex Pré-Frontal/fisiologia , Adulto , Antecipação Psicológica/fisiologia , Estimulantes do Sistema Nervoso Central , Feminino , Giro do Cíngulo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Neostriado/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Córtex Pré-Frontal/diagnóstico por imagem , Irmãos , Transtornos Relacionados ao Uso de Substâncias/diagnóstico por imagem , Transtornos Relacionados ao Uso de Substâncias/fisiopatologia , Adulto Jovem
11.
J Pathol ; 249(2): 241-254, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31144295

RESUMO

The field of Parkinson's disease research has been impeded by the absence of animal models that clearly phenocopy the features of this neurodegenerative condition. Mutations in FBXO7/PARK15 are associated with both sporadic Parkinson's disease and a severe form of autosomal recessive early-onset Parkinsonism. Here we report that conditional deletion of Fbxo7 in the midbrain dopamine neurons results in an early reduction in striatal dopamine levels, together with a slow, progressive loss of midbrain dopamine neurons and onset of locomotor defects. Unexpectedly, a later compensatory response led to a near-full restoration of dopaminergic fibre innervation in the striatum, but nigral cell loss was irreversible. Mechanistically, there was increased expression in the dopamine neurons of FBXO7-interacting protein, RPL23, which is a sensor of ribosomal stress that inhibits MDM2, the negative regulator of p53. A corresponding activated p53 transcriptional signature biased towards pro-apoptotic genes was also observed. These data suggest that the neuroprotective role of FBXO7 involves its suppression of the RPL23-MDM2-p53 axis that promotes cell death in dopaminergic midbrain neurons. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Proteínas F-Box/metabolismo , Mesencéfalo/metabolismo , Degeneração Neural , Doença de Parkinson/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Ribossômicas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Comportamento Animal , Modelos Animais de Doenças , Neurônios Dopaminérgicos/patologia , Proteínas F-Box/genética , Feminino , Locomoção , Masculino , Mesencéfalo/patologia , Mesencéfalo/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora , Doença de Parkinson/genética , Doença de Parkinson/patologia , Doença de Parkinson/fisiopatologia , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Ribossômicas/genética , Transdução de Sinais , Proteína Supressora de Tumor p53/genética
12.
Handb Exp Pharmacol ; 258: 203-230, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31707470

RESUMO

Despite the prevalence of drug use within society, only a subset of individuals actively taking addictive drugs lose control over their intake and develop compulsive drug-seeking and intake that typifies substance use disorder (SUD). Although research in this field continues to be an important and dynamic discipline, the specific neuroadaptations that drive compulsive behaviour in humans addicted to drugs and the neurobiological mechanisms that underlie an individual's innate susceptibility to SUD remain surprisingly poorly understood. Nonetheless, it is clear from research within the clinical domain that some behavioural traits are recurrently co-expressed in individuals with SUD, thereby inviting the hypothesis that certain behavioural endophenotypes may be predictive, or at least act in some way, to modify an individual's probability for developing this disorder. The analysis of such endophenotypes and their catalytic relationship to the expression of addiction-related behaviours has been greatly augmented by experimental approaches in rodents that attempt to capture diagnostically relevant aspects of this progressive brain disorder. This work has evolved from an early focus on aberrant drug reinforcement mechanisms to a now much richer account of the putatively impaired cognitive control processes that ultimately determine individual trajectories to compulsive drug-related behaviours. In this chapter we discuss the utility of experimental approaches in rodents designed to elucidate the neurobiological and genetic underpinnings of so-called risk traits and how these innate vulnerabilities collectively contribute to the pathogenesis of SUD.


Assuntos
Comportamento Aditivo/psicologia , Modelos Animais de Doenças , Comportamento de Procura de Droga , Transtornos Relacionados ao Uso de Substâncias/psicologia , Animais , Cognição , Humanos , Fenótipo , Reforço Psicológico , Roedores
13.
Acta Neuropathol ; 138(4): 575-595, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31165254

RESUMO

Parkinson's disease (PD) is characterized by the presence of α-synuclein aggregates known as Lewy bodies and Lewy neurites, whose formation is linked to disease development. The causal relation between α-synuclein aggregates and PD is not well understood. We generated a new transgenic mouse line (MI2) expressing human, aggregation-prone truncated 1-120 α-synuclein under the control of the tyrosine hydroxylase promoter. MI2 mice exhibit progressive aggregation of α-synuclein in dopaminergic neurons of the substantia nigra pars compacta and their striatal terminals. This is associated with a progressive reduction of striatal dopamine release, reduced striatal innervation and significant nigral dopaminergic nerve cell death starting from 6 and 12 months of age, respectively. In the MI2 mice, alterations in gait impairment can be detected by the DigiGait test from 9 months of age, while gross motor deficit was detected by rotarod test at 20 months of age when 50% of dopaminergic neurons in the substantia nigra pars compacta are lost. These changes were associated with an increase in the number and density of 20-500 nm α-synuclein species as shown by dSTORM. Treatment with the oligomer modulator anle138b, from 9 to 12 months of age, restored striatal dopamine release, prevented dopaminergic cell death and gait impairment. These effects were associated with a reduction of the inner density of large α-synuclein aggregates and an increase in dispersed small α-synuclein species as revealed by dSTORM. The MI2 mouse model recapitulates the progressive dopaminergic deficit observed in PD, showing that early synaptic dysfunction is associated to fine behavioral motor alterations, precedes dopaminergic axonal loss and neuronal death that become associated with a more consistent motor deficit upon reaching a certain threshold. Our data also provide new mechanistic insight for the effect of anle138b's function in vivo supporting that targeting α-synuclein aggregation is a promising therapeutic approach for PD.


Assuntos
Morte Celular/fisiologia , Neurônios Dopaminérgicos/patologia , Doença de Parkinson/patologia , Agregação Patológica de Proteínas/patologia , Substância Negra/patologia , alfa-Sinucleína/metabolismo , Animais , Modelos Animais de Doenças , Marcha/genética , Camundongos , Camundongos Transgênicos , Atividade Motora/genética , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Agregação Patológica de Proteínas/metabolismo , Substância Negra/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , alfa-Sinucleína/genética
14.
J Neurochem ; 145(2): 111-124, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29315577

RESUMO

Dysregulation of prefrontal cortical glutamatergic signalling via NMDA receptor hypofunction has been implicated in cognitive dysfunction and impaired inhibitory control in such neuropsychiatric disorders as schizophrenia, attention-deficit hyperactivity disorder and drug addiction. Although NMDA receptors functionally interact with metabotropic glutamate receptor 5 (mGluR5), the consequence of this interaction for glutamate release in the prefrontal cortex (PFC) remains unknown. We therefore investigated the effects of positive and negative allosteric mGluR5 modulation on changes in extracellular glutamate efflux in the medial PFC (mPFC) induced by systemic administration of the non-competitive NMDA receptor antagonist dizocilpine (or MK801) in rats. Extracellular glutamate efflux was measured following systemic administration of the positive allosteric mGluR5 modulator [S-(4-Fluoro-phenyl)-{3-[3-(4-fluoro-phenyl)-[1,2,4]-oxadiazol-5-yl]-piperidin-1-yl}-methanone] (ADX47273; 100 mg/kg, p.o.) and negative allosteric mGluR5 modulator [2-chloro-4-{[1-(4-fluorophenyl)-2,5-dimethyl-1H-imidazol-4-yl]ethynyl}pyridine] (RO4917523; 0.3 mg/kg, p.o.), using a wireless glutamate biosensor in awake, freely moving rats. The effect of MK801 (0.03-0.06 mg/kg, s.c.) on mPFC glutamate efflux was also investigated in addition to the effects of MK801 (0.03 mg/kg, s.c.) following ADX47273 (100 mg/kg, p.o.) pre-treatment. ADX47273 produced a sustained increase in glutamate efflux and increased the effect of NMDA receptor antagonism on glutamate efflux in the mPFC. In contrast, negative allosteric mGluR5 modulation with RO4917523 decreased glutamate efflux in the mPFC. These findings indicate that positive and negative allosteric mGluR5 modulators produce long lasting and opposing actions on extracellular glutamate efflux in the mPFC. Positive and negative allosteric modulators of mGluR5 may therefore be viable therapeutic agents to correct abnormalities in glutamatergic signalling present in a range of neuropsychiatric disorders.


Assuntos
Ácido Glutâmico/metabolismo , Córtex Pré-Frontal/metabolismo , Receptor de Glutamato Metabotrópico 5/efeitos dos fármacos , Receptor de Glutamato Metabotrópico 5/metabolismo , Regulação Alostérica/efeitos dos fármacos , Animais , Maleato de Dizocilpina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Imidazóis/farmacologia , Masculino , Oxidiazóis/farmacologia , Piperidinas/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Piridinas/farmacologia , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/metabolismo
15.
Int J Neuropsychopharmacol ; 21(7): 705-715, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29554302

RESUMO

Background: Low dopamine D2/3 receptor availability in the nucleus accumbens shell is associated with highly impulsive behavior in rats as measured by premature responses in a cued attentional task. However, it is unclear whether dopamine D2/3 receptor availability in the nucleus accumbens is equally linked to intolerance for delayed rewards, a related form of impulsivity. Methods: We investigated the relationship between D2/3 receptor availability in the nucleus accumbens and impulsivity in a delay-discounting task where animals must choose between immediate, small-magnitude rewards and delayed, larger-magnitude rewards. Corticostriatal D2/3 receptor availability was measured in rats stratified for high and low impulsivity using in vivo [18F]fallypride positron emission tomography and ex vivo [3H]raclopride autoradiography. Resting-state functional connectivity in limbic corticostriatal networks was also assessed using fMRI. Results: Delay-discounting task impulsivity was inversely related to D2/3 receptor availability in the nucleus accumbens core but not the dorsal striatum, with higher D2/3 binding in the nucleus accumbens shell of high-impulsive rats compared with low-impulsive rats. D2/3 receptor availability was associated with stronger connectivity between the cingulate cortex and hippocampus of high- vs low-impulsive rats. Conclusions: We conclude that delay-discounting task impulsivity is associated with low D2/3 receptor binding in the nucleus accumbens core. Thus, two related forms of waiting impulsivity-premature responding and delay intolerance in a delay-of-reward task-implicate an involvement of D2/3 receptor availability in the nucleus accumbens shell and core, respectively. This dissociation may be causal or consequential to enhanced functional connectivity of limbic brain circuitry and hold relevance for attention-deficit/hyperactivity disorder, drug addiction, and other psychiatric disorders.


Assuntos
Comportamento Animal/fisiologia , Córtex Cerebral/fisiologia , Conectoma/métodos , Corpo Estriado/fisiologia , Desvalorização pelo Atraso/fisiologia , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D3/metabolismo , Recompensa , Animais , Autorradiografia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/metabolismo , Corpo Estriado/diagnóstico por imagem , Corpo Estriado/metabolismo , Imageamento por Ressonância Magnética , Masculino , Tomografia por Emissão de Pósitrons , Ratos
16.
Nature ; 469(7331): 534-8, 2011 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-21270893

RESUMO

Imprinted genes, defined by their preferential expression of a single parental allele, represent a subset of the mammalian genome and often have key roles in embryonic development, but also postnatal functions including energy homeostasis and behaviour. When the two parental alleles are unequally represented within a social group (when there is sex bias in dispersal and/or variance in reproductive success), imprinted genes may evolve to modulate social behaviour, although so far no such instance is known. Predominantly expressed from the maternal allele during embryogenesis, Grb10 encodes an intracellular adaptor protein that can interact with several receptor tyrosine kinases and downstream signalling molecules. Here we demonstrate that within the brain Grb10 is expressed from the paternal allele from fetal life into adulthood and that ablation of this expression engenders increased social dominance specifically among other aspects of social behaviour, a finding supported by the observed increase in allogrooming by paternal Grb10-deficient animals. Grb10 is, therefore, the first example of an imprinted gene that regulates social behaviour. It is also currently alone in exhibiting imprinted expression from each of the parental alleles in a tissue-specific manner, as loss of the peripherally expressed maternal allele leads to significant fetal and placental overgrowth. Thus Grb10 is, so far, a unique imprinted gene, able to influence distinct physiological processes, fetal growth and adult behaviour, owing to actions of the two parental alleles in different tissues.


Assuntos
Alelos , Comportamento Animal/fisiologia , Proteína Adaptadora GRB10/genética , Proteína Adaptadora GRB10/metabolismo , Impressão Genômica/genética , Animais , Sistema Nervoso Central/embriologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Predomínio Social
17.
J Neurosci ; 35(9): 3747-55, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25740505

RESUMO

We have previously shown that impulsivity in rats is linked to decreased dopamine D2/3 receptor availability in the ventral striatum. In the present study, we investigated, using longitudinal positron emission tomography (PET), the effects of orally administered methylphenidate (MPH), a first-line treatment for attention deficit hyperactivity disorder, on D2/3 receptor availability in the dorsal and ventral striatum and related these changes to impulsivity. Rats were screened for impulsive behavior on a five-choice serial reaction time task. After a baseline PET scan with the D2/3 ligand [(18)F]fallypride, rats received 6 mg/kg MPH, orally, twice each day for 28 d. Rats were then reassessed for impulsivity and underwent a second [(18)F]fallypride PET scan. Before MPH treatment, we found that D2/3 receptor availability was significantly decreased in the left but not the right ventral striatum of high-impulse (HI) rats compared with low-impulse (LI) rats. MPH treatment increased impulsivity in LI rats, and modulated impulsivity and D2/3 receptor availability in the dorsal and ventral striatum of HI rats through inverse relationships with baseline levels of impulsivity and D2/3 receptor availability, respectively. However, we found no relationship between the effects of MPH on impulsivity and D2/3 receptor availability in any of the striatal subregions investigated. These findings indicate that trait-like impulsivity is associated with decreased D2/3 receptor availability in the left ventral striatum, and that stimulant drugs modulate impulsivity and striatal D2/3 receptor availability through independent mechanisms.


Assuntos
Estimulantes do Sistema Nervoso Central/farmacologia , Corpo Estriado/metabolismo , Inibidores da Captação de Dopamina/farmacologia , Comportamento Impulsivo/efeitos dos fármacos , Metilfenidato/farmacologia , Receptores de Dopamina D2/efeitos dos fármacos , Receptores de Dopamina D3/efeitos dos fármacos , Animais , Corpo Estriado/efeitos dos fármacos , Masculino , Metilfenidato/análogos & derivados , Tomografia por Emissão de Pósitrons , Ratos
18.
J Magn Reson Imaging ; 43(6): 1308-12, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26633759

RESUMO

PURPOSE: To evaluate the feasibility of spectral editing for quantification of γ-aminobutyric acid (GABA) in the rat brain and to determine whether altered GABA concentration in the ventral striatum is a neural endophenotype associated with trait-like impulsive behavior. MATERIALS AND METHODS: Spectra were acquired at 4.7T for 23 male Lister-hooded rats that had been previously screened for extremely low and high impulsivity phenotypes on an automated behavioral task (n = 11 low-impulsive; n = 12 high-impulsive). Voxels of 3 × 7 × 4 mm(3) (84 µL) centered bilaterally across the ventral striatum were used to evaluate GABA concentration ratios. RESULTS: Quantifiable GABA signals in the ventral striatum were obtained for all rats. Mean-edited GABA to n-acetyl aspartate (NAA) ratios in the ventral striatum were 0.22 (95% confidence interval [CI] [0.18, 0.25]). Mean GABA/NAA ratios in this region were significantly decreased by 28% in high-impulsive rats compared to low-impulsive rats (P = 0.02; 95% CI [-53%, -2%]). CONCLUSION: These findings demonstrate that spectral editing at 4.7T is a feasible method to assess in vivo GABA concentrations in the rat brain. The results show that diminished GABA content in the ventral striatum may be a neural endophenotype associated with impulsivity. J. Magn. Reson. Imaging 2016;43:1308-1312.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Imagem Molecular/métodos , Ácido gama-Aminobutírico/metabolismo , Animais , Interpretação de Imagem Assistida por Computador/métodos , Masculino , Ratos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
19.
Eur J Neurosci ; 41(12): 1524-37, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25892211

RESUMO

The medial prefrontal cortex (mPFC) and ventral striatum (VS), including the nucleus accumbens, are key forebrain regions involved in regulating behaviour for future rewards. Dysfunction of these regions can result in impulsivity, characterized by actions that are mistimed and executed without due consideration of their consequences. Here we recorded the activity of single neurons in the mPFC and VS of 16 rats during performance on a five-choice serial reaction time task of sustained visual attention and impulsivity. Impulsive responses were assessed by the number of premature responses made before target stimuli were presented. We found that the majority of cells signalled trial outcome after an action was made (both rewarded and unrewarded). Positive and negative ramping activity was a feature of population activity in the mPFC and VS (49.5 and 50.4% of cells, respectively). This delay-related activity increased at the same rate and reached the same maximum (or minimum) for trials terminated by either correct or premature responses. However, on premature trials, the ramping activity started earlier and coincided with shorter latencies to begin waiting. For all trial types the pattern of ramping activity was unchanged when the pre-stimulus delay period was made variable. Thus, premature responses may result from a failure in the timing of the initiation of a waiting process, combined with a reduced reliance on external sensory cues, rather than a primary failure in delay activity. Our findings further show that the neural locus of this aberrant timing signal may emanate from structures outside the mPFC and VS.


Assuntos
Potenciais de Ação/fisiologia , Comportamento Impulsivo/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/citologia , Estriado Ventral/citologia , Animais , Área Sob a Curva , Comportamento de Escolha , Condicionamento Operante , Modelos Lineares , Masculino , Microeletrodos , Análise de Componente Principal , Ratos , Tempo de Reação/fisiologia
20.
Behav Pharmacol ; 26(1-2): 59-72, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25369747

RESUMO

Since the identification and cloning of the major cannabinoid receptor expressed in the brain almost 25 years ago research has highlighted the potential of drugs that target the endocannabinoid system for treating addiction. The endocannabinoids, anandamide and 2-arachidonoyl glycerol, are lipid-derived metabolites found in abundance in the basal ganglia and other brain areas innervated by the mesocorticolimbic dopamine systems. Cannabinoid CB1 receptor antagonists/inverse agonists reduce reinstatement of responding for cocaine, alcohol and opiates in rodents. However, compounds acting on the endocannabinoid system may have broader application in treating drug addiction by ameliorating associated traits and symptoms such as impulsivity and anxiety that perpetuate drug use and interfere with rehabilitation. As a trait, impulsivity is known to predispose to addiction and facilitate the emergence of addiction to stimulant drugs. In contrast, anxiety and elevated stress responses accompany extended drug use and may underlie the persistence of drug intake in dependent individuals. In this article we integrate and discuss recent findings in rodents showing selective pharmacological modulation of impulsivity and anxiety by cannabinoid agents. We highlight the potential of selective inhibitors of endocannabinoid metabolism, directed at fatty acid amide hydrolase and monoacylglycerol lipase, to reduce anxiety and stress responses, and discuss novel mechanisms underlying the modulation of the endocannabinoid system, including the attenuation of impulsivity, anxiety, and drug reward by selective CB2 receptor agonists.


Assuntos
Comportamento Aditivo/tratamento farmacológico , Endocanabinoides/metabolismo , Transtornos Relacionados ao Uso de Substâncias/tratamento farmacológico , Animais , Ansiedade/tratamento farmacológico , Ansiedade/etiologia , Comportamento Aditivo/fisiopatologia , Agonistas de Receptores de Canabinoides/farmacologia , Corpo Estriado/fisiologia , Desenho de Fármacos , Humanos , Comportamento Impulsivo/efeitos dos fármacos , Recompensa , Transtornos Relacionados ao Uso de Substâncias/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA