Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(15): e2321975121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38557190

RESUMO

Monocarpic plants have a single reproductive phase in their life. Therefore, flower and fruit production are restricted to the length of this period. This reproductive strategy involves the regulation of flowering cessation by a coordinated arrest of the growth of the inflorescence meristems, optimizing resource allocation to ensure seed filling. Flowering cessation appears to be a regulated phenomenon in all monocarpic plants. Early studies in several species identified seed production as a major factor triggering inflorescence proliferative arrest. Recently, genetic factors controlling inflorescence arrest, in parallel to the putative signals elicited by seed production, have started to be uncovered in Arabidopsis, with the MADS-box gene FRUITFULL (FUL) playing a central role in the process. However, whether the genetic network regulating arrest is also at play in other species is completely unknown. Here, we show that this role of FUL is not restricted to Arabidopsis but is conserved in another monocarpic species with a different inflorescence structure, field pea, strongly suggesting that the network controlling the end of flowering is common to other plants. Moreover, field trials with lines carrying mutations in pea FUL genes show that they could be used to boost crop yield.


Assuntos
Flores , Proteínas de Domínio MADS , Pisum sativum , Arabidopsis/genética , Arabidopsis/metabolismo , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Pisum sativum/genética , Pisum sativum/metabolismo , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Proteínas de Ervilha/genética
2.
New Phytol ; 243(3): 1247-1261, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38837425

RESUMO

The afila (af) mutation causes the replacement of leaflets by a branched mass of tendrils in the compound leaves of pea - Pisum sativum L. This mutation was first described in 1953, and several reports of spontaneous af mutations and induced mutants with a similar phenotype exist. Despite widespread introgression into breeding material, the nature of af and the origin of the alleles used remain unknown. Here, we combine comparative genomics with reverse genetic approaches to elucidate the genetic determinants of af. We also investigate haplotype diversity using a set of AfAf and afaf cultivars and breeding lines and molecular markers linked to seven consecutive genes. Our results show that deletion of two tandemly arranged genes encoding Q-type Cys(2)His(2) zinc finger transcription factors, PsPALM1a and PsPALM1b, is responsible for the af phenotype in pea. Eight haplotypes were identified in the af-harbouring genomic region on chromosome 2. These haplotypes differ in the size of the deletion, covering more or less genes. Diversity at the af locus is valuable for crop improvement and sheds light on the history of pea breeding for improved standing ability. The results will be used to understand the function of PsPALM1a/b and to transfer the knowledge for innovation in related crops.


Assuntos
Haplótipos , Fenótipo , Pisum sativum , Melhoramento Vegetal , Pisum sativum/genética , Haplótipos/genética , Genes de Plantas , Proteínas de Plantas/genética , Mutação/genética , Folhas de Planta/genética , Cruzamento , Fatores de Transcrição/genética , Variação Genética
3.
Plant J ; 109(6): 1559-1574, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34953105

RESUMO

KARRIKIN INSENSITIVE2 (KAI2) is an α/ß-hydrolase required for plant responses to karrikins, which are abiotic butenolides that can influence seed germination and seedling growth. Although represented by four angiosperm species, loss-of-function kai2 mutants are phenotypically inconsistent and incompletely characterised, resulting in uncertainties about the core functions of KAI2 in plant development. Here we characterised the developmental functions of KAI2 in the grass Brachypodium distachyon using molecular, physiological and biochemical approaches. Bdkai2 mutants exhibit increased internode elongation and reduced leaf chlorophyll levels, but only a modest increase in water loss from detached leaves. Bdkai2 shows increased numbers of lateral roots and reduced root hair growth, and fails to support normal root colonisation by arbuscular-mycorrhizal (AM) fungi. The karrikins KAR1 and KAR2 , and the strigolactone (SL) analogue rac-GR24, each elicit overlapping but distinct changes to the shoot transcriptome via BdKAI2. Finally, we show that BdKAI2 exhibits a clear ligand preference for desmethyl butenolides and weak responses to methyl-substituted SL analogues such as GR24. Our findings suggest that KAI2 has multiple roles in shoot development, root system development and transcriptional regulation in grasses. Although KAI2-dependent AM symbiosis is likely conserved within monocots, the magnitude of the effect of KAI2 on water relations may vary across angiosperms.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Brachypodium , Proteínas de Arabidopsis/fisiologia , Brachypodium/genética , Furanos , Lactonas/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/genética , Piranos , Simbiose
4.
J Exp Bot ; 74(1): 194-213, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36197099

RESUMO

Medicago truncatula NODULE ROOT1 (MtNOOT1) and Pisum sativum COCHLEATA1 (PsCOCH1) are orthologous genes belonging to the NOOT-BOP-COCH-LIKE (NBCL) gene family which encodes key transcriptional co-regulators of plant development. In Mtnoot1 and Pscoch1 mutants, the development of stipules, flowers, and symbiotic nodules is altered. MtNOOT2 and PsCOCH2 represent the single paralogues of MtNOOT1 and PsCOCH1, respectively. In M. truncatula, MtNOOT1 and MtNOOT2 are both required for the establishment and maintenance of symbiotic nodule identity. In legumes, the role of NBCL2 in above-ground development is not known. To better understand the roles of NBCL genes in legumes, we used M. truncatula and P. sativum nbcl mutants, isolated a knockout mutant for the PsCOCH2 locus and generated Pscoch1coch2 double mutants in P. sativum. Our work shows that single Mtnoot2 and Pscoch2 mutants develop wild-type stipules, flowers, and symbiotic nodules. However, the number of flowers was increased and the pods and seeds were smaller compared to the wild type. Furthermore, in comparison to the corresponding nbcl1 single mutants, both the M. truncatula and P. sativum nbcl double mutants show a drastic alteration in stipule, inflorescence, flower, and nodule development. Remarkably, in both M. truncatula and P. sativum nbcl double mutants, stipules are transformed into a range of aberrant leaf-like structures.


Assuntos
Medicago truncatula , Nódulos Radiculares de Plantas , Nódulos Radiculares de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Pisum sativum/genética , Medicago truncatula/metabolismo , Simbiose/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fixação de Nitrogênio/genética , Mutação
5.
Plant J ; 103(2): 645-659, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32343459

RESUMO

In cultivated grasses, tillering, spike architecture and seed shattering represent major agronomical traits. In barley, maize and rice, the NOOT-BOP-COCH-LIKE (NBCL) genes play important roles in development, especially in ligule development, tillering and flower identity. However, compared with dicots, the role of grass NBCL genes is underinvestigated. To better understand the role of grass NBCLs and to overcome any effects of domestication that might conceal their original functions, we studied TILLING nbcl mutants in the non-domesticated grass Brachypodium distachyon. In B. distachyon, the NBCL genes BdUNICULME4 (CUL4) and BdLAXATUM-A (LAXA) are orthologous, respectively, to the barley HvUniculme4 and HvLaxatum-a, to the maize Zmtassels replace upper ears1 and Zmtassels replace upper ears2 and to the rice OsBLADE-ON-PETIOLE1 and OsBLADE-ON-PETIOLE2/3. In B. distachyon, our reverse genetics study shows that CUL4 is not essential for the establishment of the blade-sheath boundary but is necessary for the development of the ligule and auricles. We report that CUL4 also exerts a positive role in tillering and a negative role in spikelet meristem activity. On the other hand, we demonstrate that LAXA plays a negative role in tillering, positively participates in spikelet development and contributes to the control of floral organ number and identity. In this work, we functionally characterized two new NBCL genes in a context of non-domesticated grass and highlighted original roles for grass NBCL genes that are related to important agronomical traits.


Assuntos
Brachypodium/metabolismo , Proteínas de Plantas/metabolismo , Brachypodium/genética , Brachypodium/crescimento & desenvolvimento , Sequência Conservada/genética , Genes de Plantas/genética , Genes de Plantas/fisiologia , Inflorescência/crescimento & desenvolvimento , Inflorescência/metabolismo , Mutação , Filogenia , Proteínas de Plantas/genética , Genética Reversa , Transcriptoma
6.
Plant Cell ; 28(11): 2735-2754, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27956585

RESUMO

The preservation of our genetic resources and production of high-quality seeds depends on their ability to remain viable and vigorous during storage. In a quantitative trait locus analysis on seed longevity in Medicago truncatula, we identified the bZIP transcription factor ABSCISIC ACID INSENSITIVE5 (ABI5). Characterization of Mt-abi5 insertion mutant seeds revealed that both the acquisition of longevity and dormancy were severely impaired. Using transcriptomes of developing Mt-abi5 seeds, we created a gene coexpression network and revealed ABI5 as a regulator of gene modules with functions related to raffinose family oligosaccharide (RFO) metabolism, late embryogenesis abundant (LEA) proteins, and photosynthesis-associated nuclear genes (PhANGs). Lower RFO contents in Mt-abi5 seeds were linked to the regulation of SEED IMBIBITION PROTEIN1 Proteomic analysis confirmed that a set of LEA polypeptides was reduced in mature Mt-abi5 seeds, whereas the absence of repression of PhANG in mature Mt-abi5 seeds was accompanied by chlorophyll and carotenoid retention. This resulted in a stress response in Mt-abi5 seeds, evident from an increase in α-tocopherol and upregulation of genes related to programmed cell death and protein folding. Characterization of abi5 mutants in a second legume species, pea (Pisum sativum), confirmed a role for ABI5 in the regulation of longevity, seed degreening, and RFO accumulation, identifying ABI5 as a prominent regulator of late seed maturation in legumes.


Assuntos
Medicago truncatula/metabolismo , Medicago truncatula/fisiologia , Pisum sativum/metabolismo , Pisum sativum/fisiologia , Proteínas de Plantas/metabolismo , Sementes/metabolismo , Sementes/fisiologia , Fatores de Transcrição/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Medicago truncatula/genética , Pisum sativum/genética , Proteínas de Plantas/genética , Sementes/genética , Fatores de Transcrição/genética
7.
Int J Mol Sci ; 20(7)2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30939810

RESUMO

Lysin-motif receptor-like kinase PsK1 is involved in symbiosis initiation and the maintenance of infection thread (IT) growth and bacterial release in pea. We verified PsK1 specificity in relation to the Nod factor structure using k1 and rhizobial mutants. Inoculation with nodO and nodE nodO mutants significantly reduced root hair deformations, curling, and the number of ITs in k1-1 and k1-2 mutants. These results indicated that PsK1 function may depend on Nod factor structures. PsK1 with replacement in kinase domain and PsSYM10 co-production in Nicotiana benthamiana leaves did not induce a hypersensitive response (HR) because of the impossibility of signal transduction into the cell. Replacement of P169S in LysM3 domain of PsK1 disturbed the extracellular domain (ECD) interaction with PsSYM10's ECD in Y2H system and reduced HR during the co-production of full-length PsK1 and PsSYM0 in N. benthamiana. Lastly, we explored the role of PsK1 in symbiosis with arbuscular mycorrhizal (AM) fungi; no significant differences between wild-type plants and k1 mutants were found, suggesting a specific role of PsK1 in legume⁻rhizobial symbiosis. However, increased sensitivity to a highly aggressive Fusarium culmorum strain was found in k1 mutants compared with the wild type, which requires the further study of the role of PsK1 in immune response regulation.


Assuntos
Variação Estrutural do Genoma , Pisum sativum/genética , Proteínas de Plantas/genética , Proteínas Quinases/genética , Simbiose , Fusarium/patogenicidade , Micorrizas/genética , Pisum sativum/microbiologia , Proteínas de Plantas/química , Domínios Proteicos , Proteínas Quinases/química , Rhizobium/patogenicidade , Nicotiana/genética , Nicotiana/microbiologia
8.
Planta ; 248(5): 1101-1120, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30043288

RESUMO

MAIN CONCLUSION: The LysM receptor-like kinase K1 is involved in regulation of pea-rhizobial symbiosis development. The ability of the crop legume Pisum sativum L. to perceive the Nod factor rhizobial signals may depend on several receptors that differ in ligand structure specificity. Identification of pea mutants defective in two types of LysM receptor-like kinases (LysM-RLKs), SYM10 and SYM37, featuring different phenotypic manifestations and impaired at various stages of symbiosis development, corresponds well to this assumption. There is evidence that one of the receptor proteins involved in symbiosis initiation, SYM10, has an inactive kinase domain. This implies the presence of an additional component in the receptor complex, together with SYM10, that remains unknown. Here, we describe a new LysM-RLK, K1, which may serve as an additional component of the receptor complex in pea. To verify the function of K1 in symbiosis, several P. sativum non-nodulating mutants in the k1 gene were identified using the TILLING approach. Phenotyping revealed the blocking of symbiosis development at an appropriately early stage, strongly suggesting the importance of LysM-RLK K1 for symbiosis initiation. Moreover, the analysis of pea mutants with weaker phenotypes provides evidence for the additional role of K1 in infection thread distribution in the cortex and rhizobia penetration. The interaction between K1 and SYM10 was detected using transient leaf expression in Nicotiana benthamiana and in the yeast two-hybrid system. Since the possibility of SYM10/SYM37 complex formation was also shown, we tested whether the SYM37 and K1 receptors are functionally interchangeable using a complementation test. The interaction between K1 and other receptors is discussed.


Assuntos
Pisum sativum/enzimologia , Proteínas de Plantas/fisiologia , Proteínas Quinases/fisiologia , Rhizobium leguminosarum/fisiologia , Simbiose , Western Blotting , Engenharia Genética/métodos , Pisum sativum/microbiologia , Pisum sativum/fisiologia , Folhas de Planta/enzimologia , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Nicotiana/genética , Técnicas do Sistema de Duplo-Híbrido
9.
Plant Physiol ; 175(1): 351-360, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28733387

RESUMO

Land plants lose vast quantities of water to the atmosphere during photosynthetic gas exchange. In angiosperms, a complex network of veins irrigates the leaf, and it is widely held that the density and placement of these veins determines maximum leaf hydraulic capacity and thus maximum photosynthetic rate. This theory is largely based on interspecific comparisons and has never been tested using vein mutants to examine the specific impact of leaf vein morphology on plant water relations. Here we characterize mutants at the Crispoid (Crd) locus in pea (Pisum sativum), which have altered auxin homeostasis and activity in developing leaves, as well as reduced leaf vein density and aberrant placement of free-ending veinlets. This altered vein phenotype in crd mutant plants results in a significant reduction in leaf hydraulic conductance and leaf gas exchange. We find Crispoid to be a member of the YUCCA family of auxin biosynthetic genes. Our results link auxin biosynthesis with maximum photosynthetic rate through leaf venation and substantiate the theory that an increase in the density of leaf veins coupled with their efficient placement can drive increases in leaf photosynthetic capacity.


Assuntos
Ácidos Indolacéticos/metabolismo , Fotossíntese , Pisum sativum/fisiologia , Proteínas de Plantas/metabolismo , Homeostase , Mutação , Oxigenases/genética , Oxigenases/metabolismo , Pisum sativum/anatomia & histologia , Pisum sativum/genética , Fenótipo , Filogenia , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Estômatos de Plantas/anatomia & histologia , Estômatos de Plantas/genética , Estômatos de Plantas/fisiologia , Transpiração Vegetal , Água/fisiologia
10.
New Phytol ; 216(1): 193-204, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28748561

RESUMO

In recent years the biosynthesis of auxin has been clarified with the aid of mutations in auxin biosynthesis genes. However, we know little about the effects of these mutations on the seed-filling stage of seed development. Here we investigate a key auxin biosynthesis mutation of the garden pea, which results in auxin deficiency in developing seeds. We exploit the large seed size of this model species, which facilitates the measurement of compounds in individual seeds. The mutation results in small seeds with reduced starch content and a wrinkled phenotype at the dry stage. The phenotypic effects of the mutation were fully reversed by introduction of the wild-type gene as a transgene, and partially reversed by auxin application. The results indicate that auxin is required for normal seed size and starch accumulation in pea, an important grain legume crop.


Assuntos
Ácidos Indolacéticos/farmacologia , Pisum sativum/metabolismo , Sementes/anatomia & histologia , Amido/biossíntese , Ácido 2,4-Diclorofenoxiacético/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Germinação/efeitos dos fármacos , Germinação/genética , Mutação/genética , Tamanho do Órgão/efeitos dos fármacos , Pisum sativum/efeitos dos fármacos , Pisum sativum/embriologia , Pisum sativum/ultraestrutura , Fenótipo , Plantas Geneticamente Modificadas , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Sementes/ultraestrutura , Sacarose/metabolismo , Fatores de Tempo , Zigoto/efeitos dos fármacos , Zigoto/metabolismo
11.
Plant Physiol ; 172(1): 559-74, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27378816

RESUMO

Fusarium head blight (FHB) is a cereal disease caused by Fusarium graminearum, a fungus able to produce type B trichothecenes on cereals, including deoxynivalenol (DON), which is harmful for humans and animals. Resistance to FHB is quantitative, and the mechanisms underlying resistance are poorly understood. Resistance has been related to the ability to conjugate DON into a glucosylated form, deoxynivalenol-3-O-glucose (D3G), by secondary metabolism UDP-glucosyltransferases (UGTs). However, functional analyses have never been performed within a single host species. Here, using the model cereal species Brachypodium distachyon, we show that the Bradi5g03300 UGT converts DON into D3G in planta. We present evidence that a mutation in Bradi5g03300 increases root sensitivity to DON and the susceptibility of spikes to F. graminearum, while overexpression confers increased root tolerance to the mycotoxin and spike resistance to the fungus. The dynamics of expression and conjugation suggest that the speed of DON conjugation rather than the increase of D3G per se is a critical factor explaining the higher resistance of the overexpressing lines. A detached glumes assay showed that overexpression but not mutation of the Bradi5g03300 gene alters primary infection by F. graminearum, highlighting the involvement of DON in early steps of infection. Together, these results indicate that early and efficient UGT-mediated conjugation of DON is necessary and sufficient to establish resistance to primary infection by F. graminearum and highlight a novel strategy to promote FHB resistance in cereals.


Assuntos
Brachypodium/genética , Glicosiltransferases/genética , Proteínas de Plantas/genética , Raízes de Plantas/genética , Sequência de Aminoácidos , Sequência de Bases , Brachypodium/enzimologia , Resistência à Doença/genética , Fusarium/metabolismo , Fusarium/fisiologia , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glucosídeos/metabolismo , Glicosiltransferases/metabolismo , Interações Hospedeiro-Patógeno , Cinética , Mutação , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Raízes de Plantas/enzimologia , Raízes de Plantas/microbiologia , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tricotecenos/metabolismo , Difosfato de Uridina/metabolismo
12.
Plant Physiol ; 168(1): 192-204, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25755252

RESUMO

The oxidation of monolignols is a required step for lignin polymerization and deposition in cell walls. In dicots, both peroxidases and laccases are known to participate in this process. Here, we provide evidence that laccases are also involved in the lignification of Brachypodium distachyon, a model plant for temperate grasses. Transcript quantification data as well as in situ and immunolocalization experiments demonstrated that at least two laccases (LACCASE5 and LACCASE6) are present in lignifying tissues. A mutant with a misspliced LACCASE5 messenger RNA was identified in a targeting-induced local lesion in genome mutant collection. This mutant shows 10% decreased Klason lignin content and modification of the syringyl-to-guaiacyl units ratio. The amount of ferulic acid units ester linked to the mutant cell walls is increased by 40% when compared with control plants, while the amount of ferulic acid units ether linked to lignins is decreased. In addition, the mutant shows a higher saccharification efficiency. These results provide clear evidence that laccases are required for B. distachyon lignification and are promising targets to alleviate the recalcitrance of grass lignocelluloses.


Assuntos
Brachypodium/enzimologia , Brachypodium/fisiologia , Lacase/metabolismo , Lignina/metabolismo , Proteínas de Plantas/metabolismo , Caules de Planta/enzimologia , Caules de Planta/fisiologia , Alelos , Sequência de Aminoácidos , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Brachypodium/genética , Sequência Conservada , Ácidos Cumáricos/metabolismo , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Lacase/genética , Dados de Sequência Molecular , Mutação , Fenótipo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Propionatos , Estrutura Terciária de Proteína , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Frações Subcelulares/metabolismo
13.
Plant Mol Biol ; 89(6): 539-58, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26346777

RESUMO

Among a set of genes in pea (Pisum sativum L.) that were induced under drought-stress growth conditions, one encoded a protein with significant similarity to a regulator of chlorophyll catabolism, SGR. This gene, SGRL, is distinct from SGR in genomic location, encoded carboxy-terminal motif, and expression through plant and seed development. Divergence of the two encoded proteins is associated with a loss of similarity in intron/exon gene structure. Transient expression of SGRL in leaves of Nicotiana benthamiana promoted the degradation of chlorophyll, in a manner that was distinct from that shown by SGR. Removal of a predicted transmembrane domain from SGRL reduced its activity in transient expression assays, although variants with and without this domain reduced SGR-induced chlorophyll degradation, indicating that the effects of the two proteins are not additive. The combined data suggest that the function of SGRL during growth and development is in chlorophyll re-cycling, and its mode of action is distinct from that of SGR. Studies of pea sgrL mutants revealed that plants had significantly lower stature and yield, a likely consequence of reduced photosynthetic efficiencies in mutant compared with control plants under conditions of high light intensity.


Assuntos
Clorofila/metabolismo , Pisum sativum/crescimento & desenvolvimento , Pisum sativum/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Dados de Sequência Molecular , Mutação , Pisum sativum/genética , Fotossíntese/genética , Filogenia , Folhas de Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Nicotiana/genética , Nicotiana/metabolismo
14.
Proc Natl Acad Sci U S A ; 109(51): 21158-63, 2012 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-23213200

RESUMO

Legumes were among the first plant species to be domesticated, and accompanied cereals in expansion of agriculture from the Fertile Crescent into diverse environments across the Mediterranean basin, Europe, Central Asia, and the Indian subcontinent. Although several recent studies have outlined the molecular basis for domestication and eco-geographic adaptation in the two main cereals from this region, wheat and barley, similar questions remain largely unexplored in their legume counterparts. Here we identify two major loci controlling differences in photoperiod response between wild and domesticated pea, and show that one of these, high response to photoperiod (HR), is an ortholog of early flowering 3 (ELF3), a gene involved in circadian clock function. We found that a significant proportion of flowering time variation in global pea germplasm is controlled by HR, with a single, widespread functional variant conferring altered circadian rhythms and the reduced photoperiod response associated with the spring habit. We also present evidence that ELF3 has a similar role in lentil, another major legume crop, with a distinct functional variant contributing to reduced photoperiod response in cultivars widely deployed in short-season environments. Our results identify the factor likely to have permitted the successful prehistoric expansion of legume cultivation to Northern Europe, and define a conserved genetic basis for major adaptive changes in flowering phenology and growth habit in an important crop group.


Assuntos
Fabaceae/fisiologia , Lens (Planta)/metabolismo , Fotoperíodo , Pisum sativum/metabolismo , Aclimatação/genética , Adaptação Fisiológica/genética , Relógios Circadianos , Ritmo Circadiano/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Modelos Genéticos , Dados de Sequência Molecular , Pisum sativum/genética , Fenótipo , Estações do Ano
15.
BMC Plant Biol ; 13: 159, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24128060

RESUMO

BACKGROUND: Flax (Linum usitatissimum L.) is an economically important fiber and oil crop that has been grown for thousands of years. The genome has been recently sequenced and transcriptomics are providing information on candidate genes potentially related to agronomically-important traits. In order to accelerate functional characterization of these genes we have generated a flax EMS mutant population that can be used as a TILLinG (Targeting Induced Local Lesions in Genomes) platform for forward and reverse genetics. RESULTS: A population of 4,894 M2 mutant seed families was generated using 3 different EMS concentrations (0.3%, 0.6% and 0.75%) and used to produce M2 plants for subsequent phenotyping and DNA extraction. 10,839 viable M2 plants (4,033 families) were obtained and 1,552 families (38.5%) showed a visual developmental phenotype (stem size and diameter, plant architecture, flower-related). The majority of these families showed more than one phenotype. Mutant phenotype data are organised in a database and can be accessed and searched at UTILLdb (http://urgv.evry.inra.fr/UTILLdb). Preliminary screens were also performed for atypical fiber and seed phenotypes. Genomic DNA was extracted from 3,515 M2 families and eight-fold pooled for subsequent mutant detection by ENDO1 nuclease mis-match cleavage. In order to validate the collection for reverse genetics, DNA pools were screened for two genes coding enzymes of the lignin biosynthesis pathway: Coumarate-3-Hydroxylase (C3H) and Cinnamyl Alcohol Dehydrogenase (CAD). We identified 79 and 76 mutations in the C3H and CAD genes, respectively. The average mutation rate was calculated as 1/41 Kb giving rise to approximately 9,000 mutations per genome. Thirty-five out of the 52 flax cad mutant families containing missense or codon stop mutations showed the typical orange-brown xylem phenotype observed in CAD down-regulated/mutant plants in other species. CONCLUSIONS: We have developed a flax mutant population that can be used as an efficient forward and reverse genetics tool. The collection has an extremely high mutation rate that enables the detection of large numbers of independant mutant families by screening a comparatively low number of M2 families. The population will prove to be a valuable resource for both fundamental research and the identification of agronomically-important genes for crop improvement in flax.


Assuntos
Linho/genética , Genoma de Planta/genética , Mutagênese/genética , Mutação/genética , Genética Reversa/métodos , Pareamento de Bases/genética , Metanossulfonato de Etila , Flores/genética , Genes de Plantas/genética , Genótipo , Lignina/genética , Taxa de Mutação , Motivos de Nucleotídeos/genética , Fenótipo , Filogenia , Sementes/genética
16.
Plant Physiol ; 158(1): 225-38, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22045922

RESUMO

The function of PsBRC1, the pea (Pisum sativum) homolog of the maize (Zea mays) TEOSINTE BRANCHED1 and the Arabidopsis (Arabidopsis thaliana) BRANCHED1 (AtBRC1) genes, was investigated. The pea Psbrc1 mutant displays an increased shoot-branching phenotype, is able to synthesize strigolactone (SL), and does not respond to SL application. The level of pleiotropy of the SL-deficient ramosus1 (rms1) mutant is higher than in the Psbrc1 mutant, rms1 exhibiting a relatively dwarf phenotype and more extensive branching at upper nodes. The PsBRC1 gene is mostly expressed in the axillary bud and is transcriptionally up-regulated by direct application of the synthetic SL GR24 and down-regulated by the cytokinin (CK) 6-benzylaminopurine. The results suggest that PsBRC1 may have a role in integrating SL and CK signals and that SLs act directly within the bud to regulate its outgrowth. However, the Psbrc1 mutant responds to 6-benzylaminopurine application and decapitation by increasing axillary bud length, implicating a PsBRC1-independent component of the CK response in sustained bud growth. In contrast to other SL-related mutants, the Psbrc1 mutation does not cause a decrease in the CK zeatin riboside in the xylem sap or a strong increase in RMS1 transcript levels, suggesting that the RMS2-dependent feedback is not activated in this mutant. Surprisingly, the double rms1 Psbrc1 mutant displays a strong increase in numbers of branches at cotyledonary nodes, whereas branching at upper nodes is not significantly higher than the branching in rms1. This phenotype indicates a localized regulation of branching at these nodes specific to pea.


Assuntos
Lactonas/metabolismo , Pisum sativum/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/metabolismo , Compostos de Benzil , Citocininas/genética , Citocininas/metabolismo , Regulação da Expressão Gênica de Plantas , Isopenteniladenosina/análogos & derivados , Isopenteniladenosina/metabolismo , Cinetina/farmacologia , Dados de Sequência Molecular , Mutação , Pisum sativum/efeitos dos fármacos , Pisum sativum/genética , Pisum sativum/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/metabolismo , Purinas , Transdução de Sinais/genética , Regulação para Cima , Xilema/genética , Xilema/metabolismo
17.
Plant Physiol ; 159(3): 1055-63, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22573801

RESUMO

Seeds of several agriculturally important legumes are rich sources of the only halogenated plant hormone, 4-chloroindole-3-acetic acid. However, the biosynthesis of this auxin is poorly understood. Here, we show that in pea (Pisum sativum) seeds, 4-chloroindole-3-acetic acid is synthesized via the novel intermediate 4-chloroindole-3-pyruvic acid, which is produced from 4-chlorotryptophan by two aminotransferases, TRYPTOPHAN AMINOTRANSFERASE RELATED1 and TRYPTOPHAN AMINOTRANSFERASE RELATED2. We characterize a tar2 mutant, obtained by Targeting Induced Local Lesions in Genomes, the seeds of which contain dramatically reduced 4-chloroindole-3-acetic acid levels as they mature. We also show that the widespread auxin, indole-3-acetic acid, is synthesized by a parallel pathway in pea.


Assuntos
Ácidos Indolacéticos/metabolismo , Pisum sativum/metabolismo , Vias Biossintéticas , Cromatografia Líquida de Alta Pressão , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/química , Indóis/metabolismo , Marcação por Isótopo , Espectrometria de Massas , Mutação/genética , Pisum sativum/genética , Pisum sativum/crescimento & desenvolvimento , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Padrões de Referência , Sementes/genética , Sementes/crescimento & desenvolvimento , Estereoisomerismo
18.
Commun Biol ; 5(1): 126, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35149763

RESUMO

KAI2 proteins are plant α/ß hydrolase receptors which perceive smoke-derived butenolide signals and endogenous, yet unidentified KAI2-ligands (KLs). The number of functional KAI2 receptors varies among species and KAI2 gene duplication and sub-functionalization likely plays an adaptative role by altering specificity towards different KLs. Legumes represent one of the largest families of flowering plants and contain many agronomic crops. Prior to their diversification, KAI2 underwent duplication resulting in KAI2A and KAI2B. Here we demonstrate that Pisum sativum KAI2A and KAI2B are active receptors and enzymes with divergent ligand stereoselectivity. KAI2B has a higher affinity for and hydrolyses a broader range of substrates including strigolactone-like stereoisomers. We determine the crystal structures of PsKAI2B in apo and butenolide-bound states. The biochemical, structural, and mass spectra analyses of KAI2s reveal a transient intermediate on the catalytic serine and a stable adduct on the catalytic histidine, confirming its role as a bona fide enzyme. Our work uncovers the stereoselectivity of ligand perception and catalysis by diverged KAI2 receptors and proposes adaptive sensitivity to KAR/KL and strigolactones by KAI2B.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Catálise , Pisum sativum/genética , Pisum sativum/metabolismo , Percepção , Reguladores de Crescimento de Plantas/genética
19.
Front Plant Sci ; 12: 662025, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868356

RESUMO

Fusarium Head Blight (FHB) is a cereal disease caused primarily by the ascomycete fungus Fusarium graminearum with public health issues due to the production of mycotoxins including deoxynivalenol (DON). Genetic resistance is an efficient protection means and numerous quantitative trait loci have been identified, some of them related to the production of resistance metabolites. In this study, we have functionally characterized the Brachypodium distachyon BdCYP711A29 gene encoding a cytochrome P450 monooxygenase (CYP). We showed that BdCYP711A29 belongs to an oligogenic family of five members. However, following infection by F. graminearum, BdCYP711A29 is the only copy strongly transcriptionally induced in a DON-dependent manner. The BdCYP711A29 protein is homologous to the Arabidopsis thaliana MAX1 and Oryza sativa MAX1-like CYPs representing key components of the strigolactone biosynthesis. We show that BdCYP711A29 is likely involved in orobanchol biosynthesis. Alteration of the BdCYP711A29 sequence or expression alone does not modify plant architecture, most likely because of functional redundancy with the other copies. B. distachyon lines overexpressing BdCYP711A29 exhibit an increased susceptibility to F. graminearum, although no significant changes in defense gene expression were detected. We demonstrate that both orobanchol and exudates of Bd711A29 overexpressing lines stimulate the germination of F. graminearum macroconidia. We therefore hypothesize that orobanchol is a susceptibility factor to FHB.

20.
Genes (Basel) ; 12(5)2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-34063415

RESUMO

HEAT SHOCK FACTOR A2 (HSFA2) is a regulator of multiple environmental stress responses required for stress acclimation. We analyzed HSFA2 co-regulated genes and identified 43 genes strongly co-regulated with HSFA2 during multiple stresses. Motif enrichment analysis revealed an over-representation of the site II element (SIIE) in the promoters of these genes. In a yeast 1-hybrid screen with the SIIE, we identified the closely related R2R3-MYB transcription factors TT2 and MYB5. We found overexpression of MYB5 or TT2 rendered plants heat stress tolerant. In contrast, tt2, myb5, and tt2/myb5 loss of function mutants showed heat stress hypersensitivity. Transient expression assays confirmed that MYB5 and TT2 can regulate the HSFA2 promoter together with the other members of the MBW complex, TT8 and TRANSPARENT TESTA GLABRA 1 (TTG1) and that the SIIE was involved in this regulation. Transcriptomic analysis revealed that TT2/MYB5 target promoters were enriched in SIIE. Overall, we report a new function of TT2 and MYB5 in stress resistance and a role in SIIE-mediated HSFA2 regulation.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Resposta ao Choque Térmico , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição de Choque Térmico/genética , Fatores de Transcrição de Choque Térmico/metabolismo , Mutação com Perda de Função , Sementes/genética , Sementes/crescimento & desenvolvimento , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA