Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecol Lett ; 17(1): 92-100, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24325664

RESUMO

Theory predicts that stability should increase with diversity via several mechanisms. We tested predictions in a 5-year experiment that compared low-diversity exotic to high-diversity native plant mixtures under two irrigation treatments. The study included both wet and dry years. Variation in biomass across years (CV) was 50% lower in mixtures than monocultures of both native and exotic species. Growth among species was more asynchronous and overyielding values were greater during and after a drought in native than exotic mixtures. Mean-variance slopes indicated strong portfolio effects in both community types, but the intercept was higher for exotics than for natives, suggesting that exotics were inherently more variable than native species. However, this failed to result in higher CV's in exotic communities because species that heavily dominated plots tended to have lower than expected variance. Results indicate that diversity-stability mechanisms are altered in invaded systems compared to native ones they replaced.


Assuntos
Ecossistema , Poaceae/crescimento & desenvolvimento , Irrigação Agrícola
2.
Oecologia ; 175(2): 687-97, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24584284

RESUMO

Human activities have caused non-native plant species with novel ecological interactions to persist on landscapes, and it remains controversial whether these species alter multiple aspects of communities and ecosystems. We tested whether native and exotic grasslands differ in species diversity, ecosystem services, and an important aspect of functional diversity (C3:C4 proportions) by sampling 42 sites along a latitudinal gradient and conducting a controlled experiment. Exotic-dominated grasslands had drastically lower plant diversity and slightly higher tissue N concentrations and forage quality compared to native-dominated sites. Exotic sites were strongly dominated by C4 species at southern and C3 species at northern latitudes with a sharp transition at 36-38°, whereas native sites contained C3:C4 mixtures. Large differences in C3:C4 proportions and temporal niche partitioning were found between native and exotic mixtures in the experiment, implying that differences in C3:C4 proportions along the latitudinal gradient are caused partially by species themselves. Our results indicate that the replacement of native- by exotic-dominated grasslands has created a management tradeoff (high diversity versus high levels of certain ecosystem services) and that models of global change impacts and C3/C4 distribution should consider effects of exotic species.


Assuntos
Biodiversidade , Ecossistema , Espécies Introduzidas , Poaceae/fisiologia , Humanos , Fotossíntese , Poaceae/crescimento & desenvolvimento
3.
Ecol Lett ; 12(5): 432-42, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19379137

RESUMO

In many systems, native communities are being replaced by novel exotic-dominated ones. We experimentally compared species diversity decline between nine-species grassland communities under field conditions to test whether diversity maintenance mechanisms differed between communities containing all exotic or all native species using a pool of 40 species. Aboveground biomass was greater in exotic than native plots, and this difference was larger in mixtures than in monocultures. Species diversity declined more in exotic than native communities and declines were explained by different mechanisms. In exotic communities, overyielding species had high biomass in monoculture and diversity declined linearly as this selection effect increased. In native communities, however, overyielding species had low biomass in monoculture and there was no relationship between the selection effect and diversity decline. This suggests that, for this system, yielding behaviour is fundamentally different between presumably co-evolved natives and coevolutionarily naive exotic species, and that native-exotic status is important to consider.


Assuntos
Biodiversidade , Ecossistema , Modelos Biológicos , Poaceae/crescimento & desenvolvimento , Biomassa , Conservação dos Recursos Naturais/métodos , Especificidade da Espécie , Texas
4.
Ecol Evol ; 5(23): 5662-70, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27069615

RESUMO

Plant invasions are an increasingly serious global concern, especially as the climate changes. Here, we explored how plant invasions differed between native- and novel exotic-dominated grasslands with experimental addition of summer precipitation in Texas in 2009. Exotic species greened up earlier than natives by an average of 18 days. This was associated with a lower invasion rate early in the growing season compared to native communities. However, invasion rate did not differ significantly between native and exotic communities across all sampling times. The predictors of invasion rate differed between native and exotic communities, with invasion being negatively influenced by species richness in natives and by dominant species in exotics. Interestingly, plant invasions matched the bimodal pattern of precipitation in Temple, Texas, and did not respond to the pulse of precipitation during the summer. Our results suggest that we will need to take different approaches in understanding of invasion between native and exotic grasslands. Moreover, with anticipated increasing variability in precipitation under global climate change, plant invasions may be constrained in their response if the precipitation pulses fall outside the normal growing period of invaders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA