Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 293(10): 3675-3684, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29358325

RESUMO

The epithelial sodium channel (ENaC) mediates sodium absorption in lung, kidney, and colon epithelia. Channels in the ENaC/degenerin family possess an extracellular region that senses physicochemical changes in the extracellular milieu and allosterically regulates the channel opening. Proteolytic cleavage activates the ENaC opening, by the removal of specific segments in the finger domains of the α- and γ ENaC-subunits. Cleavage causes perturbations in the extracellular region that propagate to the channel gate. However, it is not known how the channel structure mediates the propagation of activation signals through the extracellular sensing domains. Here, to identify the structure-function determinants that mediate allosteric ENaC activation, we performed MD simulations, thiol modification of residues substituted by cysteine, and voltage-clamp electrophysiology recordings. Our simulations of an ENaC heterotetramer, α1ßα2γ, in the proteolytically cleaved and uncleaved states revealed structural pathways in the α-subunit that are responsible for ENaC proteolytic activation. To validate these findings, we performed site-directed mutagenesis to introduce cysteine substitutions in the extracellular domains of the α-, ß-, and γ ENaC-subunits. Insertion of a cysteine at the α-subunit Glu557 site, predicted to stabilize a closed state of ENaC, inhibited ENaC basal activity and retarded the kinetics of proteolytic activation by 2-fold. Our results suggest that the lower palm domain of αENaC is essential for ENaC activation. In conclusion, our integrated computational and experimental approach suggests key structure-function determinants for ENaC proteolytic activation and points toward a mechanistic model for the allosteric communication in the extracellular domains of the ENaC/degenerin family channels.


Assuntos
Canais Epiteliais de Sódio/metabolismo , Modelos Moleculares , Regulação Alostérica , Animais , Células Cultivadas , Ativação Enzimática , Canais Epiteliais de Sódio/química , Canais Epiteliais de Sódio/genética , Humanos , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Mutação , Oócitos/citologia , Oócitos/fisiologia , Técnicas de Patch-Clamp , Conformação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Multimerização Proteica , Estabilidade Proteica , Proteólise , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Xenopus laevis
2.
J Biol Chem ; 291(8): 3682-92, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26668308

RESUMO

Sodium absorption in epithelial cells is rate-limited by the epithelial sodium channel (ENaC) activity in lung, kidney, and the distal colon. Pathophysiological conditions, such as cystic fibrosis and Liddle syndrome, result from water-electrolyte imbalance partly due to malfunction of ENaC regulation. Because the quaternary structure of ENaC is yet undetermined, the bases of pathologically linked mutations in ENaC subunits α, ß, and γ are largely unknown. Here, we present a structural model of heterotetrameric ENaC α1ßα2γ that is consistent with previous cross-linking results and site-directed mutagenesis experiments. By using this model, we show that the disease-causing mutation αW493R rewires structural dynamics of the intersubunit interfaces α1ß and α2γ. Changes in dynamics can allosterically propagate to the channel gate. We demonstrate that cleavage of the γ-subunit, which is critical for full channel activation, does not mediate activation of ENaC by αW493R. Our molecular dynamics simulations led us to identify a channel-activating electrostatic interaction between α2Arg-493 and γGlu-348 at the α2γ interface. By neutralizing a sodium-binding acidic patch at the α1ß interface, we reduced ENaC activation of αW493R by more than 2-fold. By combining homology modeling, molecular dynamics, cysteine cross-linking, and voltage clamp experiments, we propose a dynamics-driven model for the gain-of-function in ENaC by αW493R. Our integrated computational and experimental approach advances our understanding of structure, dynamics, and function of ENaC in its disease-causing state.


Assuntos
Canais Epiteliais de Sódio/química , Modelos Moleculares , Mutação de Sentido Incorreto , Sódio/química , Regulação Alostérica , Substituição de Aminoácidos , Animais , Sítios de Ligação , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Humanos , Mutagênese Sítio-Dirigida , Estrutura Quaternária de Proteína , Ratos , Sódio/metabolismo , Homologia Estrutural de Proteína , Relação Estrutura-Atividade
3.
J Biol Chem ; 289(33): 23029-23042, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24973914

RESUMO

The epithelial sodium channel (ENaC) is activated upon endoproteolytic cleavage of specific segments in the extracellular domains of the α- and γ-subunits. Cleavage is accomplished by intracellular proteases prior to membrane insertion and by surface-expressed or extracellular soluble proteases once ENaC resides at the cell surface. These cleavage events are partially regulated by intracellular signaling through an unknown allosteric mechanism. Here, using a combination of computational and experimental techniques, we show that the intracellular N terminus of γ-ENaC undergoes secondary structural transitions upon interaction with phosphoinositides. From ab initio folding simulations of the N termini in the presence and absence of phosphatidylinositol 4,5-bisphosphate (PIP2), we found that PIP2 increases α-helical propensity in the N terminus of γ-ENaC. Electrophysiology and mutation experiments revealed that a highly conserved cluster of lysines in the γ-ENaC N terminus regulates accessibility of extracellular cleavage sites in γ-ENaC. We also show that conditions that decrease PIP2 or enhance ubiquitination sharply limit access of the γ-ENaC extracellular domain to proteases. Further, the efficiency of allosteric control of ENaC proteolysis is dependent on Tyr(370) in γ-ENaC. Our findings provide an allosteric mechanism for ENaC activation regulated by the N termini and sheds light on a potential general mechanism of channel and receptor activation.


Assuntos
Canais Epiteliais de Sódio/química , Simulação de Dinâmica Molecular , Regulação Alostérica/fisiologia , Animais , Canais Epiteliais de Sódio/genética , Mutação , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteólise , Ratos
4.
Mol Brain ; 12(1): 12, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30736831

RESUMO

This study describes the functional interaction between Cav3.2 calcium channels and the Epithelial Sodium Channel (ENaC). ß-ENaC subunits showed overlapping expression with endogenous Cav3.2 calcium channels in the thalamus and hypothalamus as detected by immunostaining. Moreover, ß- and γ-ENaC subunits could be co-immunoprecipitated with Cav3.2 calcium channels from brain lysates, dorsal horn and lumbar dorsal root ganglia. Mutation of a cluster of lysines present in the intracellular N-terminus region of ß-ENaC (K4R/ K5R/ K9R/ K16R/ K23R) reduced interactions with Cav3.2 calcium channels. Αßγ-ENaC channels enhanced Cav3.2 calcium channel trafficking to the plasma membrane in tsA-201 cells. This effect was reciprocal such that Cav3.2 channel expression also enhanced ß-ENaC trafficking to the cell surface. T-type current density was increased when fully assembled αßγ-ENaC channels were transiently expressed in CAD cells, a neuronal derived cell line. Altogether, these findings reveal ENaC as an interactor and potential regulator of Cav3.2 calcium channels expressed in neuronal tissues.


Assuntos
Canais de Cálcio Tipo T/metabolismo , Canais Epiteliais de Sódio/metabolismo , Animais , Encéfalo/metabolismo , Membrana Celular/metabolismo , Canais Epiteliais de Sódio/química , Ativação do Canal Iônico , Camundongos Endogâmicos C57BL , Ligação Proteica , Subunidades Proteicas/metabolismo , Transporte Proteico , Ratos
5.
J Gen Physiol ; 150(8): 1179-1187, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-29980634

RESUMO

Epithelial Na+ channels comprise three homologous subunits (α, ß, and γ) that are regulated by alternative splicing and proteolytic cleavage. Here, we determine the basis of the reduced Na+ current (INa) that results from expression of a previously identified, naturally occurring splice variant of the α subunit (α-ENaC), in which residues 34-82 are deleted (αΔ34-82). αΔ34-82-ENaC expression with WT ß and γ subunits in Xenopus oocytes produces reduced basal INa, which can largely be recovered by exogenous trypsin. With this αΔ34-82-containing ENaC, both α and γ subunits display decreased cleavage fragments, consistent with reduced processing by furin or furin-like convertases. Data using MTSET modification of a cysteine, introduced into the degenerin locus in ß-ENaC, suggest that the reduced INa of αΔ34-82-ENaC arises from an increased population of uncleaved, near-silent ENaC, rather than from a reduced open probability spread uniformly across all channels. After treatment with brefeldin A to disrupt anterograde trafficking of channel subunits, INa in oocytes expressing αΔ34-82-ENaC is reestablished more slowly than that in oocytes expressing WT ENaC. Overnight or acute incubation of oocytes expressing WT ENaC in the pore blocker amiloride increases basal ENaC proteolytic stimulation, consistent with relief of Na+ feedback inhibition. These responses are reduced in oocytes expressing αΔ34-82-ENaC. We conclude that the α-ENaC N terminus mediates interactions that govern the delivery of cleaved and uncleaved ENaC populations to the oocyte membrane.


Assuntos
Canais Epiteliais de Sódio/metabolismo , Furina/metabolismo , Animais , Feminino , Oócitos , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA