Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2748: 289-305, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38070121

RESUMO

Bioengineered probiotics enable new opportunities to improve cancer treatment strategies due to their tumor-colonizing capabilities. Here, we will describe the development of a probiotic E. coli Nissle 1917 platform encoding a synchronized lysis mechanism for the localized and sustained release of blocking nanobodies against immune checkpoint molecules like programmed cell death protein-ligand 1 and cytotoxic T lymphocyte-associated protein-4. Specifically, we will detail the experimental protocols needed to (1) encode and validate binding of recombinantly produced checkpoint blockade nanobodies, (2) evaluate the therapeutic efficacy and safety of the probiotic platform in syngeneic tumor-bearing mice, and (3) analyze the immunophenotype of the tumor microenvironment.


Assuntos
Neoplasias , Probióticos , Anticorpos de Domínio Único , Camundongos , Animais , Escherichia coli/genética , Anticorpos de Domínio Único/genética , Probióticos/uso terapêutico , Microambiente Tumoral
2.
J Vis Exp ; (204)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38372353

RESUMO

Engineered cell therapies utilizing chimeric antigen receptor (CAR)-T cells have achieved remarkable effectiveness in individuals with hematological malignancies and are presently undergoing development for the treatment of diverse solid tumors. So far, the preliminary evaluation of novel CAR-T cell products has predominantly taken place in xenograft tumor models using immunodeficient mice. This approach is chosen to facilitate the successful engraftment of human CAR-T cells in the experimental setting. However, syngeneic mouse models, in which tumors and CAR-T cells are derived from the same mouse strain, allow evaluation of new CAR technologies in the context of a functional immune system and comprehensive tumor microenvironment (TME). The protocol described here aims to streamline the process of mouse CAR-T cell generation by presenting standardized methods for retroviral transduction and ex vivo T cell culture. The methods described in this protocol can be applied to other CAR constructs beyond the ones used in this study to enable routine evaluation of new CAR technologies in immune-competent systems.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Animais , Camundongos , Imunoterapia Adotiva/métodos , Linfócitos T , Neoplasias/terapia , Microambiente Tumoral , Receptores de Antígenos de Linfócitos T/genética
3.
Nat Rev Bioeng ; 2(2): 120-135, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38962719

RESUMO

Bacteria are emerging as living drugs to treat a broad range of disease indications. However, the inherent advantages of these replicating and immunostimulatory therapies also carry the potential for toxicity. Advances in synthetic biology and the integration of nanomedicine can address this challenge through the engineering of controllable systems that regulate spatial and temporal activation for improved safety and efficacy. Here, we review recent progress in nanobiotechnology-driven engineering of bacteria-based therapies, highlighting limitations and opportunities that will facilitate clinical translation.

4.
bioRxiv ; 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38746175

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) poses significant challenges for effective treatment, with systemic chemotherapy often proving inadequate due to poor drug delivery and the tumor's immunosuppressive microenvironment. Engineered bacteria present a novel approach to target PDAC, leveraging their ability to colonize tumors and deliver therapeutic payloads. Here, we engineered probiotic Escherichia coli Nissle 1917 (EcN) to produce the pore-forming Theta toxin (Nis-Theta) and evaluated its efficacy in a preclinical model of PDAC. Probiotic administration resulted in selective colonization of tumor tissue, leading to improved overall survival compared to standard chemotherapy. Moreover, this strain exhibited cytotoxic effects on both primary and distant tumor lesions while sparing normal tissues. Importantly, treatment also modulated the tumor microenvironment by increasing anti-tumor immune cell populations and reducing immunosuppressive markers. These findings demonstrate the potential of engineered probiotic bacteria as a safe and effective therapeutic approach for PDAC, offering promise for improved patient outcomes.

5.
Nat Commun ; 15(1): 646, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245513

RESUMO

Bioengineered probiotics enable new opportunities to improve colorectal cancer (CRC) screening, prevention and treatment. Here, first, we demonstrate selective colonization of colorectal adenomas after oral delivery of probiotic E. coli Nissle 1917 (EcN) to a genetically-engineered murine model of CRC predisposition and orthotopic models of CRC. We next undertake an interventional, double-blind, dual-centre, prospective clinical trial, in which CRC patients take either placebo or EcN for two weeks prior to resection of neoplastic and adjacent normal colorectal tissue (ACTRN12619000210178). We detect enrichment of EcN in tumor samples over normal tissue from probiotic-treated patients (primary outcome of the trial). Next, we develop early CRC intervention strategies. To detect lesions, we engineer EcN to produce a small molecule, salicylate. Oral delivery of this strain results in increased levels of salicylate in the urine of adenoma-bearing mice, in comparison to healthy controls. To assess therapeutic potential, we engineer EcN to locally release a cytokine, GM-CSF, and blocking nanobodies against PD-L1 and CTLA-4 at the neoplastic site, and demonstrate that oral delivery of this strain reduces adenoma burden by ~50%. Together, these results support the use of EcN as an orally-deliverable platform to detect disease and treat CRC through the production of screening and therapeutic molecules.


Assuntos
Adenoma , Neoplasias Colorretais , Animais , Humanos , Camundongos , Adenoma/diagnóstico , Adenoma/terapia , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Neoplasias Colorretais/terapia , Escherichia coli/genética , Estudos Prospectivos , Salicilatos , Método Duplo-Cego
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA