RESUMO
BACKGROUND: The ability of cancer cells to be invasive and metastasize depend on several factors, of which the action of protease activity takes center stage in disease progression. PURPOSE/OBJECTIVE: To analyze function of new K21 molecule in the invasive process of oral squamous cell carcinoma (OSCC) cell line. MATERIALS & METHODS: The Fusobacterium (ATCC 23726) streaks were made, and pellets were resuspended in Cal27 (ATCC CRL-2095) OSCC cell line spheroid cell microplate. Cells were seeded and Lysotracker staining performed for CathepsinK red channel. Cell and morphology were evaluated using Transmission Electron microscopy. Thiobarbituric acid assay was performed. OSCC was analyzed for Mic60. Raman spectra were collected from the cancer cell line. L929 dermal fibroblast cells were used for Scratch Assay. ELISA muti arrays were used for cytokines and matrix molecules. Internalization ability of fibroblast cells were also analyzed. Structure of K21 as a surfactant molecule with best docked poses were presented. RESULTS: Decrease in lysosomal staining was observed after 15 and 30 min of 0.1% treatment. Tumor clusters were associated with cell membrane destruction in K21 primed cells. There was functional silencing of Mic60 via K21, especially with 1% concentration with reduced cell migration and invasiveness. Raman intensity differences were seen at 700 cm-1, 1200 cm-1 and 1600 cm-1 regions. EVs were detected within presence of fibroblast cells amongst K21 groups. Wound area and wound closure showed the progress of wound healing. CONCLUSION: Over expression of CatK can be reduced by a newly developed targeted K21 based drug delivery system leading to reduced migration and adhesion of oral squamous cell carcinoma cells. The K21 drug formulation can have great potential for cancer therapies due to targeting and cytotoxicity effects.
Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/patologia , Neoplasias Bucais/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço , Linhagem Celular Tumoral , Proliferação de Células , Catepsina K , Movimento CelularRESUMO
BACKGROUND: Treated or coated sutures promise to prevent contamination of wounds. PURPOSE: The purpose of the study was to coat surgical sutures with a new quaternary ammonium silane (QAS) antimicrobial compound at two different application temperatures and then to evaluate the resulting structural, physical, mechanical, and biological properties. STUDY DESIGN, SETTING, SAMPLE: In vitro and in vivo studies were conducted using male albino Wistar rats approved by the Joint Ethical Committee of IMU and Postgraduate Medical Institute, Lahore. Only suture samples, coated uniformly with verified presence of the compound and of adequate length were used. Samples which were not coated uniformly and with inadequate length or damaged were excluded. PREDICTOR VARIABLE: Predictor variables were sutures with and without QAS coatings and different temperatures. Sutures were coated with QAS at 0.5 and 1.0% wt/vol using the dip coating technique and sutures with and without QAS coating were tested at 25 and 40 °C temperatures. MAIN OUTCOME VARIABLE(S): Outcome variables of structural and physico-mechanical properties of QAS-coated and non-coated sutures were measured using Fourier transform infrared spectroscopy (for structural changes), confocal laser and scanning electron (for diameter changes), and tensile strength/modulus (for mechanical testing). Biologic outcome variables were tested (bacterial viability); macrophage cultures from Wistar rats were tested (M1/M2 polarization detecting IL-6 and IL-10). Macrophage cells were analyzed with CD80+ (M1) and CD163+ (M2). Chemotaxis index was calculated as a ratio of quantitative fluorescence of cells. COVARIATES: Not applicable. ANALYSES: Ordinal data among groups were compared using the Wilcoxon Mann-Whitney U test along with the comparison of histological analysis using the Wilcoxon Sign-rank test (P < .05). RESULTS: Fourier transform infrared spectroscopy peak at 1490 cm-1 confirmed the presence of QAS on suture's surfaces with a significant increase (P < .05) in diameter (0.99 ± 0.5-mm) and weight (0.77 ± 0.02-mg) observed for 1% QAS groups treated at 40 °C. Non-coated samples heated at 25 °C had significantly (P < .05) less diameters (0.22 ± 0.03-mm) and weights (0.26 ± 0.06-mg). Highest tensile strength/modulus was observed for 0.5% QAS-coated samples which also had significantly higher antibacterial characteristics than other sutures (P < .05). QAS-coated sutures significantly increased M1 and M2 markers. CONCLUSION AND RELEVANCE: QAS coating conferred antibacterial action properties without compromising the physical and mechanical properties of the suture.
Assuntos
Materiais Revestidos Biocompatíveis , Ratos Wistar , Silanos , Suturas , Animais , Ratos , Masculino , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Silanos/química , Silanos/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Teste de Materiais , Resistência à Tração , Compostos de Amônio Quaternário/farmacologia , Compostos de Amônio Quaternário/química , Anti-Infecciosos/farmacologia , Microscopia Eletrônica de Varredura , Microscopia Confocal , Propriedades de SuperfícieRESUMO
STATEMENT OF PROBLEM: Considerable variations exist in cavity preparation methods and approaches. Whether the extent and depth of cavity preparation because of the extent of caries affects the overall accuracy of training deep learning models remains unexplored. PURPOSE: The purpose of this study was to investigate the difference in 3-dimensionsal (3D) model cavity preparations after International Caries Detection and Assessment System (ICDAS) classification performed by different practitioners and the subsequent influence on the ability of a deep learning model to predict cavity classification. MATERIAL AND METHODS: Two operators prepared 56 restorative cavities on simulated mandibular first molars according to 4 ICDAS classifications, followed by 3D scanning and computer-aided design processing. The surface area, virtual volume, Hausdorff distance (HD), and Dice Similarity Coefficients were computed. Multivariate analysis of variance was used to assess cavity size and operator proficiency interactions, and 1-way ANOVA was used to evaluate HD differences across 4 cavity classifications (α=.05). The 3D convolutional neural network (CNN) predicted the ICDAS class, and Saliency Maps explained the decisions of the models. RESULTS: Operator 1 exhibited a cavity preparation surface area of 360.55 ±15.39 mm2, and operator 2 recorded 355.24 ±10.79 mm2. Volumetric differences showed operator 1 with 440.41 ±35.29 mm3 and operator 2 with 441.01 ±35.37 mm3. Significant interactions (F=2.31, P=.01) between cavity size and operator proficiency were observed. A minimal 0.13 ±0.097 mm variation was noted in overlapping preparations by the 2 operators. The 3D CNN model achieved an accuracy of 94.44% in classifying the ICDAS classes with a 66.67% accuracy when differentiating cavities prepared by the 2 operators. CONCLUSIONS: Operator performance discrepancies were evident in the occlusal cavity floor, primarily due to varying cavity depths. Deep learning effectively classified cavity depths from 3D intraoral scans and was less affected by preparation quality or operator skills.
RESUMO
BACKGROUND: Craniofacial bone regeneration represents a dynamic area within tissue engineering and regenerative medicine. Central to this field, is the continual exploration of new methodologies for template fabrication, leveraging established bio ceramic materials, with the objective of restoring bone integrity and facilitating successful implant placements. METHODS: Photopolymerized templates were prepared using three distinct bio ceramic materials, specifically a wet chemically synthesized bioactive glass and two commercially sourced hydroxyapatite variants. These templates underwent comprehensive characterization to assess their physicochemical and mechanical attributes, employing techniques including Fourier transform infrared spectroscopy, scanning electron microscopy, and nano-computed tomography. Evaluation of their biocompatibility was conducted through interaction with primary human osteoblasts (hOB) and subsequent examination using scanning electron microscopy. RESULTS: The results demonstrated that composite showed intramolecular hydrogen bonding interactions with the photopolymer, while computerized tomography unveiled the porous morphology and distribution within the templates. A relatively higher porosity percentage (31.55 ± 8.70%) and compressive strength (1.53 ± 0.11 MPa) was noted for bioactive glass templates. Human osteoblast cultured on bioactive glass showed higher viability compared to other specimens. Scanning micrographs of human osteoblast on templated showed cellular adhesion and the presence of filopodia and lamellipodia. CONCLUSION: In summary these templates have the potential to be used for alveolar bone regeneration in critical size defect. Photopolymerization of bioceramics may be an interesting technique for scaffolds fabrication for bone tissue engineering application but needs more optimization to overcome existing issues like the ideal ratio of the photopolymer to bioceramics.
Assuntos
Cerâmica , Vidro , Osteoblastos , Engenharia Tecidual , Humanos , Engenharia Tecidual/métodos , Vidro/química , Cerâmica/química , Materiais Biocompatíveis/química , Microscopia Eletrônica de Varredura , Durapatita/química , Ossos Faciais/diagnóstico por imagem , Teste de Materiais , Regeneração Óssea , Polimerização , Espectroscopia de Infravermelho com Transformada de Fourier , Porosidade , Adesão Celular , Sobrevivência Celular , Alicerces Teciduais/química , Células Cultivadas , Força CompressivaRESUMO
AIMS AND OBJECTIVES: To analyze anti-MMP mode of action of Quaternary Ammonium Silane (QAS, codenamed as k21) by binding onto specific MMP site using computational molecular simulation and Anti-Sortase A (SrtA) mode of action by binding onto specific site using computational molecular simulation. MATERIALS AND METHODS: In silico Molecular Dynamics (MD) was used to determine the interactions of K21 inside the pocket of the targeted protein (crystal structure of fibroblast collagenase-1 complexed to a diphenyl-ether sulphone based hydroxamic acid; PDB ID: 966C; Crystal structure of MMP-2 active site mutant in complex with APP-derived decapeptide inhibitor. MD simulations were accomplished with the Desmond package in Schrödinger Drug Discovery Suite. Blood samples (~ 0.5 mL) collected into K2EDTA were immediately transferred for further processing using the Litron MicroFlow® PLUS micronucleus analysis kit for mouse blood according to the manufacturer's instructions. Bacterial Reverse Mutation Test of K21 Molecule was performed to evaluate K21 and any possible metabolites for their potential to induce point mutations in amino acid-requiring strains of Escherichia coli (E. coli) (WP2 uvrA (tryptophan-deficient)). RESULTS: Molecular Simulation depicted that K21 has a specific pocket binding on various MMPs and SrtA surfaces producing a classical clouting effect. K21 did not induce micronuclei, which are the result of chromosomal damage or damage to the mitotic apparatus, in the peripheral blood reticulocytes of male and female CD-1 mice when administered by oral gavage up to the maximum recommended dose of 2000 mg/kg. The test item, K21, was not mutagenic to Salmonella typhimurium (S. typhimurium) strains TA98, TA100, TA1535 and TA1537 and E. coli strain WP2 uvrA in the absence and presence of metabolic activation when tested up to the limit of cytotoxicity or solubility under the conditions of the test. CONCLUSION: K21 could serve as a potent protease inhibitor maintaining the physical and biochemical properties of dental structures.
Assuntos
Compostos de Amônio , Camundongos , Masculino , Feminino , Animais , Testes de Mutagenicidade , Compostos de Amônio/farmacologia , Escherichia coli , Mutagênicos/farmacologia , Metaloproteinases da MatrizRESUMO
INTRODUCTION: Monkeypox caused by the Monkeypox virus, a member of the Orthopoxvirus genus, is currently considered a major concern among healthcare authorities due to its high transmissibility rate. Currently, no specific treatment is available for this disease, due to which healthcare professionals, specifically Dentists, are required to look out for symptoms at early stages to prevent its spread. OBJECTIVE: To analyze the role of dentists in identifying Monkeypox cases and limiting its spread. METHODS: We conducted a scoping review on monkeypox and its oral manifestation. PRISMA protocols were observed in data collection. The relevant literature search was conducted in relevant databases like PubMed, Scopus, Web of Science, Embase, CINAHL, and Google Scholar. Relevant articles related to Monkeypox, and Dentistry were included in the final review. Articles published from March 2022- September 2022 were included in the review. Keywords and Mesh words related to monkeypox, and dentistry were used as part of the search strategy. RESULTS: A total of 1881 articles were reviewed, among which 7 articles were included. Dentists were strongly advised to be on high alert for Monkeypox symptoms due to their close contact with patients. Around 70% of Monkeypox cases reported oral lesions at early stages, which requires a differential diagnosis from other oral lesions. Considering this, dentists should be well-versed in this new and emerging threat. CONCLUSION: Although dentists have been shown to play an important role in the treatment of monkeypox, there is insufficient data available. More research on dentistry and monkeypox will be needed in the near future.
Assuntos
Mpox , Humanos , Coleta de Dados , Odontologia , Instalações de Saúde , Pessoal de SaúdeRESUMO
To determine whether quaternary ammonium (k21) binds to Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2) spike protein via computational molecular docking simulations, the crystal structure of the SARS-CoV-2 spike receptor-binding domain complexed with ACE-2 (PDB ID: 6LZG) was downloaded from RCSB PD and prepared using Schrodinger 2019-4. The entry of SARS-CoV-2 inside humans is through lung tissues with a pH of 7.38-7.42. A two-dimensional structure of k-21 was drawn using the 2D-sketcher of Maestro 12.2 and trimmed of C18 alkyl chains from all four arms with the assumption that the core moiety k-21 was without C18. The immunogenic potential of k21/QA was conducted using the C-ImmSim server for a position-specific scoring matrix analyzing the human host immune system response. Therapeutic probability was shown using prediction models with negative and positive control drugs. Negative scores show that the binding of a quaternary ammonium compound with the spike protein's binding site is favorable. The drug molecule has a large Root Mean Square Deviation fluctuation due to the less complex geometry of the drug molecule, which is suggestive of a profound impact on the regular geometry of a viral protein. There is high concentration of Immunoglobulin M/Immunoglobulin G, which is concomitant of virus reduction. The proposed drug formulation based on quaternary ammonium to characterize affinity to the SARS-CoV-2 spike protein using simulation and computational immunological methods has shown promising findings.
Assuntos
Descoberta de Drogas , Compostos de Amônio Quaternário/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Sítios de Ligação , COVID-19/patologia , COVID-19/virologia , Humanos , Simulação de Acoplamento Molecular , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/metabolismo , Compostos de Amônio Quaternário/química , SARS-CoV-2/isolamento & purificação , Silanos/química , Silanos/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Tratamento Farmacológico da COVID-19RESUMO
This study's objective was to examine L-arginine (L-arg) supplementation's effect on mono-species biofilm (Streptococcus mutans/Streptococcus sanguinis) growth and underlying enamel substrates. The experimental groups were 1%, 2%, and 4% arg, and 0.9% NaCl was used as the vehicle control. Sterilised enamel blocks were subjected to 7-day treatment with test solutions and S. mutans/S. sanguinis inoculum in BHI. Post-treatment, the treated biofilms stained for live/dead bacterial cells were analysed using confocal microscopy. The enamel specimens were analysed using X-ray diffraction crystallography (XRD), Raman spectroscopy (RS), and transmission electron microscopy (TEM). The molecular interactions between arg and MMP-2/MMP-9 were determined by computational molecular docking and MMP assays. With increasing arg concentrations, bacterial survival significantly decreased (p < 0.05). The XRD peak intensity with 1%/2% arg was significantly higher than with 4% arg and the control (p < 0.05). The bands associated with the mineral phase by RS were significantly accentuated in the 1%/2% arg specimens compared to in other groups (p < 0.05). The TEM analysis revealed that 4% arg exhibited an ill-defined shape of enamel crystals. Docking of arg molecules to MMPs appears feasible, with arg inhibiting MMP-2/MMP-9 (p < 0.05). L-arginine supplementation has an antimicrobial effect on mono-species biofilm. L-arginine treatment at lower (1%/2%) concentrations exhibits enamel hydroxyapatite stability, while the molecule has the potential to inhibit MMP-2/MMP-9.
Assuntos
Antibacterianos/farmacologia , Arginina/farmacologia , Durapatita/farmacologia , Inibidores de Metaloproteinases de Matriz/farmacologia , Antibacterianos/química , Arginina/química , Relação Dose-Resposta a Droga , Durapatita/química , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/química , Testes de Sensibilidade Microbiana , Streptococcus mutans/efeitos dos fármacos , Streptococcus sanguis/efeitos dos fármacosRESUMO
To determine the antibacterial effect of propolis nanoparticles (PNs) as an endodontic irrigant against Enterococcus faecalis biofilm inside the endodontic root canal system. Two-hundred-ten extracted human teeth were sectioned to obtain 6 mm of the middle third of the root. The root canal was enlarged to an internal diameter of 0.9 mm. The specimens were inoculated with E. faecalis for 21 days. Following this, specimens were randomly divided into seven groups, with 30 dentinal blocks in each group including: group I-saline; group II-propolis 100 µg/mL; group III-propolis 300 µg/mL; group IV-propolis nanoparticle 100 µg/mL; group V-propolis nanoparticle 300µg/mL; group VI-6% sodium hypochlorite; group VII-2% chlorhexidine. Dentin shavings were collected at 200 and 400 µm depths, and total numbers of CFUs were determined at the end of one, five, and ten minutes. The non-parametric Kruskal-Wallis and Mann-Whitney tests were used to compare the differences in reduction in CFUs between all groups, and probability values of p < 0.05 were set as the reference for statistically significant results. The antibacterial effect of PNs as an endodontic irrigant was also assessed against E. faecalis isolates from patients with failed root canal treatment. Scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) were also performed after exposure to PNs. A Raman spectroscope, equipped with a Leica microscope and lenses with curve-fitting Raman software, was used for analysis. The molecular interactions between bioactive compounds of propolis (Pinocembrin, Kaempferol, and Quercetin) and the proteins Sortase A and ß-galactosidase were also understood by computational molecular docking studies. PN300 was significantly more effective in reducing CFUs compared to all other groups (p < 0.05) except 6% NaOCl and 2% CHX (p > 0.05) at all time intervals and both depths. At five minutes, 6% NaOCl and 2% CHX were the most effective in reducing CFUs (p < 0.05). However, no significant difference was found between PN300, 6% NaOCl, and 2% CHX at 10 min (p > 0.05). SEM images also showed the maximum reduction in E. faecalis with PN300, 6% NaOCl, and 2% CHX at five and ten minutes. CLSM images showed the number of dead cells in dentin were highest with PN300 compared to PN100 and saline. There was a reduction in the 484 cm-1 band and an increase in the 870 cm-1 band in the PN300 group. The detailed observations of the docking poses of bioactive compounds and their interactions with key residues of the binding site in all the three docking protocols revealed that the interactions were consistent with reasonable docking and IFD docking scores. PN300 was equally as effective as 6% NaOCl and 2% CHX in reducing the E. faecalis biofilms.
Assuntos
Antibacterianos/administração & dosagem , Enterococcus faecalis/efeitos dos fármacos , Nanopartículas/química , Própole/administração & dosagem , Adulto , Antibacterianos/química , Biofilmes/efeitos dos fármacos , Cavidade Pulpar/efeitos dos fármacos , Cavidade Pulpar/microbiologia , Dentina/microbiologia , Enterococcus faecalis/patogenicidade , Feminino , Humanos , Masculino , Microscopia Confocal , Simulação de Acoplamento Molecular , Própole/químicaRESUMO
BACKGROUND: Compare antimicrobial efficacy of a quarternary ammonium silane (QAS)/k21 as an intracanal medicament against E. faecalis and C. albicans biofilms formed on root dentin. METHODOLOGY: Dentin blocks were sterilized and E. faecalis and C. albicans microbial colonies were counted for colony-forming-units against 2%k21, 2%CHX and Ca(OH)2 medicaments. Biofilm colonies after 7 days on dentin were analysed using confocal laser scanning microscopy with live/dead bacterial viability staining. TEM was done to study dentin collagen matrix. Dentin discs from 3rd day and 7th day well plate was used for Raman spectra and observed under fluorescent-microscope. Docking studies were carried out on MMP-2 S1 binding-domain with k21. RESULTS: There was reduction of E. faecalis/C. albicans when k21, chlorhexidine and calcium hydroxide were used with highest percentage in 2%k21 treated specimens. 2%k21 showed dense and regular collagen network with intact cross-banding and decreased Raman intensity for 2%k21 on 3rd day. NaOCl + k21 showed least adherence, whereas saline groups showed highest adherence of E. faecalis and C. albicans to root-canal dentin. Alizarin red staining of hDPSCs revealed calcium deposition in all groups with significant difference seen amongst 2%k21 groups. MMP-2 ligand binding was seen accurately indicating possible target sites for k21 intervention. CONCLUSION: 2%k21 can be considered as alternative intracanal medicament.
Assuntos
Compostos de Amônio , Silanos , Biofilmes , Hidróxido de Cálcio , Clorexidina/farmacologia , Cavidade Pulpar , Dentina , Enterococcus faecalis , Humanos , Irrigantes do Canal Radicular/farmacologiaRESUMO
The correct spelling of the second author's name is Liebert Parreiras Nogueira.
RESUMO
Innovative strategies for periodontal regeneration have been the focus of research clusters across the globe for decades. In order to overcome the drawbacks of currently available options, investigators have suggested a novel concept of functionally graded membrane (FGM) templates with different structural and morphological gradients. Chitosan (CH) has been used in the past for similar purpose. However, the composite formulation of composite and tetracycline when cross-linked with glutaraldehyde have received little attention. Therefore, the purpose of the study was to investigate the drug loading and release characteristics of novel freeze gelated chitosan templates at different percentages of glutaraldehyde. These were cross-linked with 0.1 and 1% glutaraldehyde and loaded with doxycycline hyclate. The electron micrographs depicted porous morphology of neat templates. After cross-linking, these templates showed compressed ultrastructures. Computerized tomography analysis showed that the templates had 88 to 92% porosity with average pore diameter decreased from 78 to 44.9 µm with increasing concentration. Fourier transform infrared spectroscopy showed alterations in the glycosidic segment of chitosan fingerprint region which after drug loading showed a dominant doxycycline spectral composite profile. Interestingly, swelling profile was not affected by cross-linking either at 0.1 and 1% glutaraldehyde and template showed a swelling ratio of 80%, which gained equilibrium after 15 min. The drug release pattern also showed a 40 µg/mL of release after 24 h. These doxycycline-loaded templates show their tendency to be used in a functionally graded membrane facing the defect site.
Assuntos
Materiais Biocompatíveis/química , Quitosana/química , Reagentes de Ligações Cruzadas/química , Congelamento , Regeneração Tecidual Guiada Periodontal/métodos , Materiais Biocompatíveis/farmacocinética , Quitosana/farmacocinética , Reagentes de Ligações Cruzadas/farmacocinética , Liberação Controlada de Fármacos , Géis , Glutaral/química , Glutaral/farmacocinética , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier/métodosRESUMO
Background and Objectives: The aims of this systematic review were to identify additional infection control measures implemented in dental practice globally to prevent cross-infection and evaluate the psychological impacts of the pandemic among dental professionals. Materials and Methods: A sequential systematic literature search was conducted from December 2019 to 30 April 2020 through PubMed, CINAHL, Scopus, Google Scholar, Embase, and Web of Science databases. The search yielded the following results: "COVID-19" (n = 12,137), "Novel corona virus" (n = 63), "COVID-19 and dentistry" (n = 46), "COVID-19 and oral health" (n = 41), "Novel Corona virus and Dentistry" (n = 0), "dental health and Novel Coronavirus" (n = 26), and "dental practice and Novel Coronavirus" (n = 6). Results: After a careful review and eliminating articles based on inclusion and exclusion criteria, the final review included 13 articles. Management of infection control is discussed extensively in the literature and remains the main theme of many Coronavirus Disease 2019 (COVID-19) articles on dentistry. Telephone triage using a questionnaire, hand hygiene, personal protective equipment (PPE) for clinical and nonclinical staff, a preprocedural mouth rinse, and aerosol management have been discussed and implemented in few countries. Three studies recommended that elective treatments for patients with a temperature of >100.4 F or 38 °C should be postponed or performed in an airborne infection isolation room (AIIR) or negative-pressure room. Limiting the number of patients in the waiting area, the removal of shared objects, proper ventilation, and physical distancing were highly recommended. Psychological distress among dental professionals in relation to existing medical conditions and self-efficacy has been discussed. Conclusions: Although the COVID-19 pandemic has had a substantial impact on the dental profession worldwide, our review highlights many practice management approaches to adopt the new norm. More research highlighting evidence-based safety practices and multisectoral collaboration is required to help dental professionals make informed decisions and make the profession safe, both for the patient and dental professionals.
Assuntos
COVID-19 , Assistência Odontológica , Controle de Infecções , Saúde Bucal/tendências , Gestão da Segurança , COVID-19/epidemiologia , COVID-19/prevenção & controle , Assistência Odontológica/métodos , Assistência Odontológica/organização & administração , Humanos , Controle de Infecções/métodos , Controle de Infecções/organização & administração , Inovação Organizacional , SARS-CoV-2 , Gestão da Segurança/métodos , Gestão da Segurança/organização & administração , Gestão da Segurança/tendênciasAssuntos
Compostos de Amônio , Anti-Infecciosos , Humanos , Silanos , Anti-Infecciosos/farmacologia , Antibacterianos , CicatrizaçãoRESUMO
Microbiota are found in highly organized and complex entities, known as biofilms, the characteristics of which are fundamentally different from microbes in planktonic suspensions. Root canal infections are biofilm mediated. The complexity and variability of the root canal system, together with the multi-species nature of biofilms, make disinfection of this system extremely challenging. Microbial persistence appears to be the most important factor for failure of root canal treatment and this could further have an impact on pain and quality of life. Biofilm removal is accomplished by a chemo-mechanical process, using specific instruments and disinfecting chemicals in the form of irrigants and/or intracanal medicaments. Endodontic research has focused on the characterization of root canal biofilms and the clinical methods to disrupt the biofilms in addition to achieving microbial killing. In this narrative review, we discuss the role of microbial biofilms in endodontics and review the literature on the role of root canal disinfectants and disinfectant-activating methods on biofilm removal.
Assuntos
Biofilmes , Cavidade Pulpar/microbiologia , Animais , Endodontia/métodos , Humanos , Tratamento do Canal Radicular/métodosRESUMO
BACKGROUND: Blockchain technology provides a secure and decentralized platform for storing and transferring sensitive medical data, which can be utilized to enable remote medical consultations. AIM: A theoretical framework for creating a blockchain-based digital system created to facilitate telemedicine system. RESULTS: This paper proposes a theoretical framework based on Hyperledger fabric for creating a blockchain-based digital entity to facilitate telemedicine services. The proposed framework utilizes blockchain technology to provide a secure and reliable platform for medical practitioners to interact remotely with patient transactions. CONCLUSION: The blockchain will serve as a one-stop digital service to secure patient data, ensure privacy, and facilitate payments. The proposed framework leverages the existing Hyperledger fabric platform to build a secure blockchain-assisted telemedicine platform.
Assuntos
Blockchain , Segurança Computacional , Telemedicina , Humanos , ConfidencialidadeRESUMO
OBJECTIVES: Evaluate the ability of strontium fluoride on bond strength and enamel integrity after incorporation within orthodontic adhesive system as a delivery vehicle. METHODS: Experimental orthodontic adhesive system Transbond™ XT were modified with 1% Sr2+, 0.5% SrF2, 1% strontium, 0.5% Sr2+, 1% F-, 0.5% F-, and no additions were control. Mixing of formulation was monitored using Fourier transform infrared spectroscopy. Small-molecule drug-discovery suite was used to gain insights into Sr2+, F-, and SrF2 binding. Shear bond testing was performed after 6-months of ageing. Enamel blocks were cut, and STEM pictures were recorded. Specimens were indented to evaluate elastic modulus. Raman microscope was used to collect Raman spectra and inspected using a scanning electron microscope. Crystal structural analysis was performed using X-ray diffraction. Effect of material on cellular proliferation was determined. Confocal was performed to evaluate the effect of formulation on biofilms. RESULTS: FTIR of modified adhesives depicted peak changes within range due to various functional groups existing within samples. TEM represented structurally optimized hexagonal unit-cell of hydroxyapatite. Mean shear bond strength is recorded highest for Transbond XT with 1% SrF2. Dead bacterial percentage appeared higher in 0.5% SrF2 and 1% F- specimens. Crystal lengths showed an increase in 0.5% and 1% SrF2 specimens. Phase contrast within TEM images showed a union of 0.5% SrF2 crystal with enamel crystal with higher elastic modulus and highly mineralized crystalline hydroxyapatite. Intensity of ν1 PO43- and ν1 CO32- along with carbonate - / ν1PO43- ratio displayed good association with strontium fluoride. The formulation showed acceptable cell biocompatibility (p < 0.353). All specimens displayed characteristic diffraction maxima of different apatite angles within XRD. SIGNIFICANCE: Experimental results suggested good biocompatibility, adequate mechanical strength, and far-ranging crystallization ability. This would provide a new strategy to overcome the two major challenges of fixed orthodontics, biofilm growth, and demineralization of enamel.
Assuntos
Esmalte Dentário , Módulo de Elasticidade , Teste de Materiais , Microscopia Eletrônica de Varredura , Cimentos de Resina , Análise Espectral Raman , Esmalte Dentário/efeitos dos fármacos , Espectroscopia de Infravermelho com Transformada de Fourier , Técnicas In Vitro , Cimentos de Resina/química , Colagem Dentária , Difração de Raios X , Remineralização Dentária/métodos , Estrôncio/química , Estrôncio/farmacologia , Resistência ao Cisalhamento , Humanos , Fluoretos/química , Fluoretos/farmacologia , Propriedades de Superfície , Biofilmes/efeitos dos fármacosRESUMO
Three-dimensional printing (3DP) technology has revolutionized the field of the use of bioceramics for maxillofacial and periodontal applications, offering unprecedented control over the shape, size, and structure of bioceramic implants. In addition, bioceramics have become attractive materials for these applications due to their biocompatibility, biostability, and favorable mechanical properties. However, despite their advantages, bioceramic implants are still associated with inferior biological performance issues after implantation, such as slow osseointegration, inadequate tissue response, and an increased risk of implant failure. To address these challenges, researchers have been developing strategies to improve the biological performance of 3D-printed bioceramic implants. The purpose of this review is to provide an overview of 3DP techniques and strategies for bioceramic materials designed for bone regeneration. The review also addresses the use and incorporation of active biomolecules in 3D-printed bioceramic constructs to stimulate bone regeneration. By controlling the surface roughness and chemical composition of the implant, the construct can be tailored to promote osseointegration and reduce the risk of adverse tissue reactions. Additionally, growth factors, such as bone morphogenic proteins (rhBMP-2) and pharmacologic agent (dipyridamole), can be incorporated to promote the growth of new bone tissue. Incorporating porosity into bioceramic constructs can improve bone tissue formation and the overall biological response of the implant. As such, employing surface modification, combining with other materials, and incorporating the 3DP workflow can lead to better patient healing outcomes.
RESUMO
AIMS AND OBJECTIVES: To examine if a novel antimicrobial silane K21 can alter macrophage polarisation and affect fibroblast proliferation by deciphering the molecular pathways for programmed healing using a combined in vitro and in vivo (animal) burn model. MATERIALS AND METHODS: An injectable silane-based antimicrobial aimed to modulate macrophage polarisation was manufactured. Experimental analysis included colorimetric cell migration assays on gingival fibroblasts, macrophage phagocytosis characterisation, immunofluorescence staining, triacylglycerol accumulation within macrophages by LCMS, cellular metabolic/proliferation assays, macrophage exposure quantification with morphology assessment using FE-SEM, Raman spectral analysis, RNA isolation for relative gene expression and animal study model to morphometrically and microscopically analyse partial thickness burn wound healing under QAS/K21. RESULTS: M1 and M2 polarisation both appeared exaggerated under QAS/K21 treatment. The wounds treated with K21 had depicted accelerated healing as compared to control (P < .05) in dorsal skin of rabbits. Relative gene expression results demonstrate reduced cytokine and anti-inflammatory response under the influence of K21. While M1 expression, TG accumulation, and associated characterisations demonstrate the programmed inflammatory potential of K21. CONCLUSION: the antimicrobial and reparative efficacy of K21 silane aids in programmed inflammation for enhanced tissue healing and repair.
RESUMO
The aim is to evaluate the development of an experimental multi-mode/Universal resin-based dentin adhesive modified with synthetic Mg2+ doped hydroxyapatite crystals (HAp) having self-remineralization and antibiofilm properties. HAp doped with Mg2+ was prepared by the precipitation method. Experimental adhesives were subjected to degree of conversion and X-ray diffraction test for size and crystal structure. Bond strength was tested, and electron microscopy (SEM/TEM) imaging of resin-dentin interface was done along with nanoleakage, nanoindentation, confocal and Raman analyses. S. mutans was analysed using CLSM images against modified adhesive specimens. Nucleating abilities within the resin-dentin specimens are determined by measuring Ca2+. Alkaline phosphatase, Runx2, and Ocn transcripts are amplified using quantitative polymerase chain reaction (q-PCR). A calcium assay is performed to quantify level of mineralisation. When compared to control adhesives, the 0.5% Hap/Mg2+ containing experimental dentin adhesive demonstrated improved interaction with dentin. The preservation of uniform intact hybrid layer with the absence of nanoleakage indicated dentin bond integrity with 0.5% HAP/Mg2+ modified adhesive. Self-remineralization and antibiofilm potentials are supported.