Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 19(3): e0299193, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38547117

RESUMO

This study aimed to measure maize (Zea mays) plant nutrient content and nutrient removal in grain, and to evaluate the residual soil nitrogen, phosphorus, and potassium as impacted by planting date and density. Field experiments were conducted to evaluate six plant densities and seven planting dates using a split-split plot design with three replications. Besides the crop growth and yield parameters, six plants were collected at the maturity and soil was sampled from each plot for nutrient analysis. Plant N, P, and K concentrations varied with planting date and density and within the ranges of 0.6-1.024%, 0.054-0.127%, and 0.75-1.71%, respectively. Grain N, P, and K concentrations decreased with plant density and varied from 1.059 to 1.558%, 0.20 to 0.319%, and 0.29 to 0.43%, respectively. Soil residual nutrient varied with depth, planting density and date. Residual N concentration in the topsoil varied from 0.6 to 37.2 mg kg-1 in 2019 and from 1.5 to 11.2 mg kg-1 in 2020 and was high under the last two planting dates. Soil residual N concentration was higher in the second layer than in the topsoil. The N concentration in the third layer varied from 0.1 to 33.2 mg kg-1 and was impacted by plant density. Topsoil P did not vary among planting dates and densities. The second and third soil layers P concentration was not affected. There was 83% increase in topsoil K in 2020 compared to 2019, and a decrease of 65 and 23% in soil K was observed in the second and third soil layers, respectively. For maize production system sustainability, future research should use a holistic approach investigating the impact of planting date, plant density on crop growth, yield, nutrient uptake and remobilization, and soil properties under different fertilizer rates to develop the fertilizer recommendation for maize while reducing the environmental impact of the production system.


Assuntos
Solo , Zea mays , Solo/química , Fertilizantes/análise , Nutrientes/análise , Grão Comestível/química , Nitrogênio/análise , Agricultura
2.
Animals (Basel) ; 14(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38338014

RESUMO

Interest is increasing in grazing winter canola (Brassica napus) as an alternative crop in winter wheat (Triticum aestivum) rotations in the Southern High Plains (SHP) of the USA and similar environments. In this stidy, winter cereal rye (Secale cereale) and winter canola pastures (forage) were compared for two winter growing seasons at New Mexico State University's Rex E. Kirksey Agricultural Science Center at Tucumcari, NM, USA, to determine the relative effect of pasture type on late-gestation beef cows and growing yearling cattle, along with the effect of grazing on canola grain production. Canola grain yields were reduced by 25% when canola was grazed until removal approximately one month after grazing was initiated, but before the onset of rapid regrowth after winter (641 vs. 486 kg grain ha-1 for never grazed or grazed canola, respectively, p < 0.0256). No differences existed for forage mass, nutritive value, or animal performance, although forage mineral composition of canola could be a concern. Grazing winter canola as a dual-purpose crop in the SHP and similar environments is feasible when proper grazing management is applied; producers should anticipate a 20-25% reduction in grain yield, but expect animal gains to offset that loss.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA