Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 113(13): 133001, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25302884

RESUMO

We probe nuclear and electron spins in a single molecule even beyond the electromagnetic dipole selection rules, at readily accessible magnetic fields (few mT) and temperatures (5 K) by resonant radio-frequency current from a scanning tunneling microscope. We achieve subnanometer spatial resolution combined with single-spin sensitivity, representing a 10 orders of magnitude improvement compared to existing magnetic resonance techniques. We demonstrate the successful resonant spectroscopy of the complete manifold of nuclear and electronic magnetic transitions of up to ΔI(z)=±3 and ΔJ(z)=±12 of single quantum spins in a single molecule. Our method of resonant radio-frequency scanning tunneling spectroscopy offers, atom-by-atom, unprecedented analytical power and spin control with an impact on diverse fields of nanoscience and nanotechnology.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Fenômenos Eletromagnéticos , Ondas de Rádio
2.
Nanotechnology ; 25(13): 135705, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24594655

RESUMO

We have upgraded a low-temperature scanning tunnelling microscope (STM) with a radio-frequency (RF) modulation system to extend STM spectroscopy to the range of low energy excitations (<1 meV). We studied single molecules of a stable hydrocarbon π-radical weakly physisorbed on Au(111). At 5 K thermal excitation of the adsorbed molecules is inhibited due to the lack of short-wavelength phonons of the substrate. We demonstrate resonant excitation of mechanical modes of single molecules by RF tunnelling at 115 MHz, which induces structural changes in the molecule ranging from controlled diffusion and modification of bond angles to bond breaking as the ultimate climax (resonance catastrophe). Our results pave the way towards RF-STM-based spectroscopy and controlled manipulation of molecular nanostructures on a surface.

3.
Nanotechnology ; 23(16): 165301, 2012 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-22460604

RESUMO

The epitaxial growth of Si on Si(001) under conditions at which the (2 × n) superstructure is forming has been investigated by scanning tunneling microscopy and Monte Carlo simulations. Our experiments reveal a periodic change of the surface morphology with the surface coverage of Si. A regular (2 × n) stripe pattern is observed at coverages of 0.7-0.9 monolayers that periodically alternates with less dense surface structures at lower Si surface coverages. The MC simulations show that the growth of Si is affected by step-edge barriers, which favors the formation of a rather uniform two-dimensional framework-like configuration. Subsequent deposition of Ge onto the (2 × n) stripe pattern yields a dense array of small Ge nanostructures.


Assuntos
Cristalização/métodos , Modelos Químicos , Modelos Moleculares , Impressão Molecular/métodos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Silício/química , Simulação por Computador , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(1 Pt 2): 016402, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19658818

RESUMO

The results of a theoretical investigation on the stopping power of ions moving in a two-dimensional degenerate electron gas are presented. The stopping power for an ion is calculated employing linear-response theory using the dielectric function approach. The collisions, which lead to a damping of plasmons and quasiparticles in the electron gas, is taken into account through a relaxation-time approximation in the linear-response function. The stopping power for an ion is calculated in both the low- and high-velocity limits. In order to highlight the effects of damping, we present a comparison of our analytical and numerical results, in the case of pointlike ions, obtained for a nonzero damping with those for a vanishing damping. It is shown that the equipartition sum rule first formulated by Lindhard and Winther for three-dimensional degenerate electron gas does not necessarily hold in two dimensions. We have generalized this rule introducing an effective dielectric function. In addition, some results for two-dimensional interacting electron gas have been obtained. In this case, the exchange-correlation interactions of electrons are considered via local-field corrected dielectric function.

5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 69(4 Pt 2): 046404, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15169103

RESUMO

The various aspects of the correlated stopping power of pointlike and extended ions moving in a disordered degenerate electron gas have been analytically and numerically studied. Within the linear response theory we have made a systematic and comprehensive investigation of correlated stopping power, vicinage function, and related quantities for protons and extended ions, as well as for their clusters. The disorder, which leads to a damping of plasmons and quasiparticles in the electron gas, is taken into account through a relaxation time approximation in the linear response function. The stopping power for an arbitrary extended ion with a single bound electron is calculated in both the low- and high velocity limits. Our analytical results show that in a high velocity limit the main logarithmic contribution to the stopping power for an extended ion is significantly modified and for instance, in the case of He+, Li2+, and Be3+ ions must behave as ln ( A v(5) ), ln ( A v(3.25) ), and ln ( A v(2.77) ), respectively where v is the ion velocity. This behavior may be contrasted with the usual ln ( v(2) ) dependence for a point ion projectile. It is shown that the factor A which depends on the damping can be significantly reduced by increasing the latter. In order to highlight the effects of damping we present a comparison of our analytical and numerical results, in the case of both pointlike and extended ions, obtained for a nonzero damping with those for a vanishing damping.

6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 66(4 Pt 2): 046415, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12443338

RESUMO

In this paper, we report results on our theoretical studies of stopping power contributions from single-particle and plasmon excitations. We have introduced an equipartition ratio defined as the ratio of stopping contributions from plasmon and single-particle excitations, respectively. Within the linear response theory we have made a comprehensive investigation of this equipartition ratio for fast pointlike and extended projectile ions in a disordered electron gas; the latter is modeled by a degenerate electron gas of metallic densities and with disorder being incorporated within a relaxation-time approximation. As simple but useful examples of pointlike and extended projectiles we have considered proton and He+ ion, as well as diproton and He+ ion clusters. We present detailed and comparative results for the equipartition ratio corresponding to several values of the damping parameter which characterizes disorder in our model. The results are also compared, wherever applicable, with those for individual, i.e., uncorrelated projectiles.

7.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(3 Pt 2): 036403, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21517600

RESUMO

The results of a theoretical investigation of the low-velocity stopping power of ions in a magnetized collisional and classical plasma are reported. The stopping power for an ion is calculated through the linear-response (LR) theory. The collisions, which lead to a damping of the excitations in the plasma, are taken into account through a number-conserving relaxation time approximation in the LR function. In order to highlight the effects of collisions and magnetic field, we present a comparison of our analytical and numerical results obtained for nonzero damping or magnetic field with those for vanishing damping or magnetic field. It is shown that the collisions remove the anomalous friction obtained previously [Nersisyan et al., Phys. Rev. E 61, 7022 (2000)] for the collisionless magnetized plasmas at low ion velocities. One of the major objectives of this paper is to compare and to contrast our theoretical results with those obtained through a diffusion coefficient formulation based on the Dufty-Berkovsky relation evaluated for a magnetized one-component plasma modeled with target ions and electrons.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA