Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Development ; 150(16)2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37497580

RESUMO

Earlier data on liver development demonstrated that morphogenesis of the bile duct, portal mesenchyme and hepatic artery is interdependent, yet how this interdependency is orchestrated remains unknown. Here, using 2D and 3D imaging, we first describe how portal mesenchymal cells become organised to form hepatic arteries. Next, we examined intercellular signalling active during portal area development and found that axon guidance genes are dynamically expressed in developing bile ducts and portal mesenchyme. Using tissue-specific gene inactivation in mice, we show that the repulsive guidance molecule BMP co-receptor A (RGMA)/neogenin (NEO1) receptor/ligand pair is dispensable for portal area development, but that deficient roundabout 2 (ROBO2)/SLIT2 signalling in the portal mesenchyme causes reduced maturation of the vascular smooth muscle cells that form the tunica media of the hepatic artery. This arterial anomaly does not impact liver function in homeostatic conditions, but is associated with significant tissular damage following partial hepatectomy. In conclusion, our work identifies new players in development of the liver vasculature in health and liver regeneration.


Assuntos
Orientação de Axônios , Artéria Hepática , Animais , Camundongos , Ductos Biliares , Morfogênese , Inativação Gênica
2.
Hepatology ; 74(3): 1445-1460, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33768568

RESUMO

BACKGROUND AND AIMS: Earlier diagnosis and treatment of intrahepatic cholangiocarcinoma (iCCA) are necessary to improve therapy, yet limited information is available about initiation and evolution of iCCA precursor lesions. Therefore, there is a need to identify mechanisms driving formation of precancerous lesions and their progression toward invasive tumors using experimental models that faithfully recapitulate human tumorigenesis. APPROACH AND RESULTS: To this end, we generated a mouse model which combines cholangiocyte-specific expression of KrasG12D with 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet-induced inflammation to mimic iCCA development in patients with cholangitis. Histological and transcriptomic analyses of the mouse precursor lesions and iCCA were performed and compared with human analyses. The function of genes overexpressed during tumorigenesis was investigated in human cell lines. We found that mice expressing KrasG12D in cholangiocytes and fed a DDC diet developed cholangitis, ductular proliferations, intraductal papillary neoplasms of bile ducts (IPNBs), and, eventually, iCCAs. The histology of mouse and human IPNBs was similar, and mouse iCCAs displayed histological characteristics of human mucin-producing, large-duct-type iCCA. Signaling pathways activated in human iCCA were also activated in mice. The identification of transition zones between IPNB and iCCA on tissue sections, combined with RNA-sequencing analyses of the lesions supported that iCCAs derive from IPNBs. We further provide evidence that tensin-4 (TNS4), which is stimulated by KRASG12D and SRY-related HMG box transcription factor 17, promotes tumor progression. CONCLUSIONS: We developed a mouse model that faithfully recapitulates human iCCA tumorigenesis and identified a gene cascade which involves TNS4 and promotes tumor progression.


Assuntos
Neoplasias dos Ductos Biliares/genética , Carcinoma Ductal/genética , Colangiocarcinoma/genética , Modelos Animais de Doenças , Neoplasias Hepáticas Experimentais/genética , Camundongos , Tensinas/genética , Animais , Neoplasias dos Ductos Biliares/induzido quimicamente , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/patologia , Carcinoma Ductal/induzido quimicamente , Carcinoma Ductal/metabolismo , Carcinoma Ductal/patologia , Carcinoma Papilar/induzido quimicamente , Carcinoma Papilar/genética , Carcinoma Papilar/metabolismo , Carcinoma Papilar/patologia , Colangiocarcinoma/induzido quimicamente , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Colangite/induzido quimicamente , Colangite/complicações , Proteínas HMGB/genética , Proteínas HMGB/metabolismo , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Hepáticas Experimentais/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Piridinas/toxicidade , Fatores de Transcrição SOXF/genética , Fatores de Transcrição SOXF/metabolismo , Transdução de Sinais , Tensinas/metabolismo
3.
Hepatology ; 67(1): 313-327, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28833283

RESUMO

Transcriptional networks control the differentiation of the hepatocyte and cholangiocyte lineages from embryonic liver progenitor cells and their subsequent maturation to the adult phenotype. However, how relative levels of hepatocyte and cholangiocyte gene expression are determined during differentiation remains poorly understood. Here, we identify microRNA (miR)-337-3p as a regulator of liver development. miR-337-3p stimulates expression of cholangiocyte genes and represses hepatocyte genes in undifferentiated progenitor cells in vitro and in embryonic mouse livers. Beyond the stage of lineage segregation, miR-337-3p controls the transcriptional network dynamics of developing hepatocytes and balances both cholangiocyte populations that constitute the ductal plate. miR-337-3p requires Notch and transforming growth factor-ß signaling and exerts a biphasic control on the hepatocyte transcription factor hepatocyte nuclear factor 4α by modulating its activation and repression. With the help of an experimentally validated mathematical model, we show that this biphasic control results from an incoherent feedforward loop between miR-337-3p and hepatocyte nuclear factor 4α. CONCLUSION: Our results identify miR-337-3p as a regulator of liver development and highlight how tight quantitative control of hepatic cell differentiation is exerted through specific gene regulatory network motifs. (Hepatology 2018;67:313-327).


Assuntos
Diferenciação Celular/genética , Regulação da Expressão Gênica no Desenvolvimento , Fator 1-alfa Nuclear de Hepatócito/genética , Hepatócitos/metabolismo , MicroRNAs/genética , Animais , Western Blotting , Células Cultivadas , Camundongos , Transdução de Sinais/genética , Estatísticas não Paramétricas , Fatores de Transcrição
4.
Mol Pharm ; 16(5): 2048-2059, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-30965005

RESUMO

The purpose of this study was to assess whether cationic nanoliposomes could address tumor vaccines to dendritic cells in the lungs in vivo. Nanoliposomes were prepared using a cationic lipid, dimethylaminoethanecarbamoyl-cholesterol (DC-cholesterol) or dioleoyltrimethylammoniumpropane (DOTAP), and dipalmitoylphosphatidylcholine (DPPC), the most abundant phospholipid in lung surfactant. The liposomes presented a size below 175 nm and they effectively entrapped tumor antigens, an oligodeoxynucletotide containing CpG motifs (CpG) and the fluorescent dye calcein used as a tracer. Although the liposomes could permanently entrap a large fraction of the actives, they could not sustain their release in vitro. Liposomes made of DOTAP were safe to respiratory cells in vitro, while liposomes composed of DC-cholesterol were cytotoxic. DOTAP nanoliposomes were mainly taken up by alveolar macrophages following delivery to the lungs in mice. Few dendritic cells took up the liposomes, and interstitial macrophages did not take up liposomal calcein more than they took up soluble calcein. Stimulation of the innate immune system using liposomal CpG strongly enhanced uptake of calcein liposomes by all phagocytes in the lungs. Although a small percentage of dendritic cells took up the nanoliposomes, alveolar macrophages represented a major barrier to dendritic cell access in the lungs.


Assuntos
Ilhas de CpG/imunologia , Células Dendríticas/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Lipossomos/farmacocinética , Pulmão/citologia , Pulmão/efeitos dos fármacos , Macrófagos Alveolares/efeitos dos fármacos , 1,2-Dipalmitoilfosfatidilcolina/farmacocinética , Adjuvantes Imunológicos/uso terapêutico , Animais , Vacinas Anticâncer/uso terapêutico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Colesterol/análogos & derivados , Colesterol/farmacocinética , Ácidos Graxos Monoinsaturados/farmacocinética , Feminino , Fluoresceínas/farmacocinética , Corantes Fluorescentes/farmacocinética , Lipopeptídeos , Lipossomos/síntese química , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Antígeno MART-1/farmacologia , Camundongos , Nanopartículas/química , Compostos de Amônio Quaternário/farmacocinética , Distribuição Tecidual , Antígeno gp100 de Melanoma/farmacologia
5.
Eur J Immunol ; 46(6): 1449-59, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27000947

RESUMO

IL-22 has a detrimental role in skin inflammatory processes, for example in psoriasis. As transcription factor, AhR controls the IL-22 production by several cell types (i.e. Th17 cells). Here, we analyzed the role of Ahr in IL-22 production by immune cells in the inflamed skin, using an imiquimod-induced psoriasis mouse model. Our results indicate that IL-22 is expressed in the ear of imiquimod-treated Ahr(-/-) mice but less than in wild-type mice. We then studied the role of AhR on three cell populations known to produce IL-22 in the skin: γδ T cells, Th17 cells, and ILC3, and a novel IL-22-producing cell type identified in this setting: CD4(-) CD8(-) TCRß(+) T cells. We showed that AhR is required for IL-22 production by Th17, but not by the three other cell types, in the imiquimod-treated ears. Moreover, AhR has a role in the recruitment of γδ T cells, ILC3, and CD4(-) CD8(-) TCRß(+) T cells into the inflamed skin or in their local proliferation. Taken together, AhR has a direct role in IL-22 production by Th17 cells in the mouse ear skin, but not by γδ T cells, CD4(-) CD8(-) TCRß(+) T cells and ILCs.


Assuntos
Aminoquinolinas/efeitos adversos , Quimiotaxia/imunologia , Interleucinas/biossíntese , Psoríase/etiologia , Psoríase/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Proliferação de Células , Quimiotaxia/genética , Modelos Animais de Doenças , Imiquimode , Imunidade Inata/genética , Imunidade Inata/imunologia , Interleucinas/genética , Camundongos , Camundongos Knockout , Psoríase/patologia , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/genética , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Receptores de Hidrocarboneto Arílico/deficiência , Receptores de Hidrocarboneto Arílico/genética , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Células Th17/imunologia , Células Th17/metabolismo , Interleucina 22
6.
J Pathol ; 235(5): 698-709, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25421226

RESUMO

Macrophages play a central role in immune and tissue responses of granulomatous lung diseases induced by pathogens and foreign bodies. Circulating monocytes are generally viewed as central precursors of these tissue effector macrophages. Here, we provide evidence that granulomas derive from alveolar macrophages serving as a local reservoir for the expansion of activated phagocytic macrophages. By exploring lung granulomatous responses to silica particles in IL-1-deficient mice, we found that the absence of IL-1α, but not IL-1ß, was associated with reduced CD11b(high) phagocytic macrophage accumulation and fewer granulomas. This defect was associated with impaired alveolar clearance and resulted in the development of pulmonary alveolar proteinosis (PAP). Reconstitution of IL-1α(-/-) mice with recombinant IL-1α restored lung clearance functions and the pulmonary accumulation of CD11b(high) phagocytic macrophages. Mechanistically, IL-1α induced the proliferation of CD11b(low) alveolar macrophages and differentiated these cells into CD11b(high) macrophages which perform critical phagocytic functions and organize granuloma. We newly discovered here that IL-1α triggers lung responses requiring macrophage proliferation and maturation from tissue-resident macrophages.


Assuntos
Antígeno CD11b/metabolismo , Proliferação de Células , Granuloma/metabolismo , Interleucina-1alfa/metabolismo , Pneumopatias/metabolismo , Ativação de Macrófagos , Macrófagos Alveolares/metabolismo , Proteinose Alveolar Pulmonar/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Granuloma/induzido quimicamente , Granuloma/genética , Granuloma/patologia , Interleucina-1alfa/deficiência , Interleucina-1alfa/genética , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Pneumopatias/induzido quimicamente , Pneumopatias/genética , Pneumopatias/patologia , Macrófagos Alveolares/patologia , Camundongos Knockout , Fagocitose , Fenótipo , Proteinose Alveolar Pulmonar/induzido quimicamente , Proteinose Alveolar Pulmonar/genética , Proteinose Alveolar Pulmonar/patologia , Dióxido de Silício , Fatores de Tempo
7.
Gastroenterology ; 145(3): 668-78.e3, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23684747

RESUMO

BACKGROUND & AIMS: Diseases of the exocrine pancreas are often associated with perturbed differentiation of acinar cells. MicroRNAs (miRNAs) regulate pancreas development, yet little is known about their contribution to acinar cell differentiation. We aimed to identify miRNAs that promote and control the maintenance of acinar differentiation. METHODS: We studied mice with pancreas- or acinar-specific inactivation of Dicer (Foxa3-Cre/Dicer(loxP/-) mice), combined (or not) with inactivation of hepatocyte nuclear factor (HNF) 6 (Foxa3-Cre/Dicer(loxP/-)/Hnf6-/- mice). The role of specific miRNAs in acinar differentiation was investigated by transfecting cultured cells with miRNA mimics or inhibitors. Pancreatitis-induced metaplasia was investigated in mice after administration of cerulein. RESULTS: Inhibition of miRNA synthesis in acini by inactivation of Dicer and pancreatitis-induced metaplasia were associated with repression of acinar differentiation and with induction of HNF6 and hepatic genes. The phenotype of Dicer-deficient acini depends on the induction of HNF6; overexpression of this factor in developing acinar cells is sufficient to repress acinar differentiation and to induce hepatic genes. Let-7b and miR-495 repress HNF6 and are expressed in developing acini. Their expression is inhibited in Dicer-deficient acini, as well as in pancreatitis-induced metaplasia. In addition, inhibiting let-7b and miR-495 in acinar cells results in similar effects to those found in Dicer-deficient acini and metaplastic cells, namely induction of HNF6 and hepatic genes and repression of acinar differentiation. CONCLUSIONS: Let-7b, miR-495, and their targets constitute a gene network that is required to establish and maintain pancreatic acinar cell differentiation. Additional studies of this network will increase our understanding of pancreatic diseases.


Assuntos
Células Acinares/citologia , Diferenciação Celular/genética , Fator 6 Nuclear de Hepatócito/metabolismo , MicroRNAs/metabolismo , Pâncreas Exócrino/citologia , Células Acinares/metabolismo , Animais , Biomarcadores/metabolismo , Ceruletídeo , Citometria de Fluxo , Regulação da Expressão Gênica , Imuno-Histoquímica , Metaplasia , Camundongos , Camundongos Knockout , Pâncreas Exócrino/metabolismo , Pâncreas Exócrino/patologia , Pancreatite/induzido quimicamente , Pancreatite/genética , Pancreatite/metabolismo , Pancreatite/patologia , Reação em Cadeia da Polimerase em Tempo Real
8.
Cell Rep ; 43(7): 114401, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38943641

RESUMO

Human CD8 tumor-infiltrating lymphocytes (TILs) with impaired effector functions and PD-1 expression are categorized as exhausted. However, the exhaustion-like features reported in TILs might stem from their activation rather than the consequence of T cell exhaustion itself. Using CRISPR-Cas9 and lentiviral overexpression in CD8 T cells from non-cancerous donors, we show that the T cell receptor (TCR)-induced transcription factor interferon regulatory factor 4 (IRF4) promotes cell proliferation and PD-1 expression and hampers effector functions and expression of nuclear factor κB (NF-κB)-regulated genes. While CD8 TILs with impaired interferon γ (IFNγ) production exhibit activation markers IRF4 and CD137 and exhaustion markers thymocyte selection associated high mobility group box (TOX) and PD-1, activated T cells in patients with COVID-19 do not demonstrate elevated levels of TOX and PD-1. These results confirm that IRF4+ TILs are exhausted rather than solely activated. Our study indicates, however, that PD-1 expression, low IFNγ production, and active cycling in TILs are all influenced by IRF4 upregulation after T cell activation.

9.
Life Sci Alliance ; 7(1)2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37931958

RESUMO

The presence of human neutrophils in the tumor microenvironment is strongly correlated to poor overall survival. Most previous studies have focused on the immunosuppressive capacities of low-density neutrophils (LDN), also referred to as granulocytic myeloid-derived suppressor cells, which are elevated in number in the blood of many cancer patients. We observed two types of LDN in the blood of lung cancer and ovarian carcinoma patients: CD45high LDN, which suppressed T-cell proliferation and displayed mature morphology, and CD45low LDN, which were immature and non-suppressive. We simultaneously evaluated the classical normal-density neutrophils (NDN) and, when available, tumor-associated neutrophils. We observed that NDN from cancer patients suppressed T-cell proliferation, and NDN from healthy donors did not, despite few transcriptomic differences. Hence, the immunosuppression mediated by neutrophils in the blood of cancer patients is not dependent on the cells' density but rather on their maturity.


Assuntos
Células Supressoras Mieloides , Neoplasias , Humanos , Neutrófilos , Granulócitos , Neoplasias/patologia , Fenótipo , Microambiente Tumoral
10.
Front Cell Dev Biol ; 11: 1243863, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37842081

RESUMO

The single cell RNA sequencing technique has been particularly used during the last years, allowing major discoveries. However, the widespread application of this analysis has showed limitations. Indeed, the direct study of fresh tissues is not always feasible, notably in the case of genetically engineered mouse embryo or sensitive tissues whose integrity is affected by classical digestion methods. To overcome these limitations, single nucleus RNA sequencing offers the possibility to work with frozen samples. Thus, single nucleus RNA sequencing can be performed after genotyping-based selection on samples stocked in tissue bank and is applicable to retrospective studies. Therefore, this technique opens the field to a wide range of applications requiring adapted protocols for nucleus isolation according to the tissue considered. Here we developed a protocol of nucleus isolation from frozen murine placenta and pancreas. These two complex tissues were submitted to a combination of enzymatic and manual dissociation before undergoing different steps of washing and centrifugation. The entire protocol was performed with products usually present in a research lab. Before starting the sequencing process, nuclei were sorted by flow cytometry. The results obtained validate the efficiency of this protocol which is easy to set up and does not require the use of commercial kits. This specificity makes it adaptable to different organs and species. The association of this protocol with single nucleus RNA sequencing allows the study of complex samples that resist classical lysis methods due to the presence of fibrotic or fatty tissue, such as fibrotic kidney, tumors, embryonic tissues or fatty pancreas.

11.
Front Immunol ; 14: 1308539, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38187391

RESUMO

Introduction: The transcription factor HELIOS is primarily known for its expression in CD4 regulatory T cells, both in humans and mice. In mice, HELIOS is found in exhausted CD8 T cells. However, information on human HELIOS+ CD8 T cells is limited and conflicting. Methods: In this study, we characterized by flow cytometry and transcriptomic analyses human HELIOS+ CD8 T cells. Results: These T cells primarily consist of memory cells and constitute approximately 21% of blood CD8 T cells. In comparison with memory HELIOS- T-BEThigh CD8 T cells that displayed robust effector functions, the memory HELIOS+ T-BEThigh CD8 T cells produce lower amounts of IFN-γ and TNF-α and have a lower cytotoxic potential. We wondered if these cells participate in the immune response against viral antigens, but did not find HELIOS+ cells among CD8 T cells recognizing CMV peptides presented by HLA-A2 and HLA-B7. However, we found HELIOS+ CD8 T cells that recognize a CMV peptide presented by MHC class Ib molecule HLA-E. Additionally, a portion of HELIOS+ CD8 T cells is characterized by the expression of CD161, often used as a surface marker for identifying TC17 cells. These CD8 T cells express TH17/TC17-related genes encoding RORgt, RORa, PLZF, and CCL20. Discussion: Our findings emphasize that HELIOS is expressed across various CD8 T cell populations, highlighting its significance beyond its role as a transcription factor for Treg or exhausted murine CD8 T cells. The significance of the connection between HELIOS and HLA-E restriction is yet to be understood.


Assuntos
Infecções por Citomegalovirus , Antígenos HLA-E , Humanos , Animais , Camundongos , Linfócitos T CD8-Positivos , Fator de Necrose Tumoral alfa , Fatores de Transcrição/genética
12.
Eur J Med Chem ; 227: 113892, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34678572

RESUMO

Selenium is an underexplored element that can be used for bioisosteric replacement of lower molecular weight chalcogens such as oxygen and sulfur. More studies regarding the impact of selenium substitution in different chemical scaffolds are needed to fully grasp this element's potential. Herein, we decided to evaluate the impact of selenium incorporation in a series of tryptophan 2,3-dioxygenase (TDO2) inhibitors, a target of interest in cancer immunotherapy. First, we synthesized the different chalcogen isosteres through Suzuki-Miyaura type coupling. Next, we evaluated the isosteres' affinity and selectivity for TDO2, as well as their lipophilicity, microsomal stability and cellular toxicity on TDO2-expressing cell lines. Overall, chalcogen isosteric replacements did not disturb the on-target activity but allowed for a modulation of the compounds' lipophilicity, toxicity and stability profiles. The present work contributes to our understanding of oxygen/sulfur/selenium isostery towards increasing structural options in medicinal chemistry for the development of novel and distinctive drug candidates.


Assuntos
Calcogênios/farmacologia , Inibidores Enzimáticos/farmacologia , Compostos Heterocíclicos/farmacologia , Selênio/farmacologia , Triptofano Oxigenase/antagonistas & inibidores , Calcogênios/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/química , Humanos , Estrutura Molecular , Oxigênio/química , Oxigênio/farmacologia , Selênio/química , Estereoisomerismo , Relação Estrutura-Atividade , Enxofre/química , Enxofre/farmacologia , Triptofano Oxigenase/metabolismo
13.
Biomedicines ; 10(4)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35453506

RESUMO

Papillary thyroid cancer (PTC) is the most common endocrine malignancy for which diagnosis and recurrences still challenge clinicians. New perspectives to overcome these issues could come from the study of extracellular vesicle (EV) populations and content. Here, we aimed to elucidate the heterogeneity of EVs circulating in the tumor and the changes in their microRNA content during cancer progression. Using a mouse model expressing BRAFV600E, we isolated and characterized EVs from thyroid tissue by ultracentrifugations and elucidated their microRNA content by small RNA sequencing. The cellular origin of EVs was investigated by ExoView and that of deregulated EV-microRNA by qPCR on FACS-sorted cell populations. We found that PTC released more EVs bearing epithelial and immune markers, as compared to the healthy thyroid, so that changes in EV-microRNAs abundance were mainly due to their deregulated expression in thyrocytes. Altogether, our work provides a full description of in vivo-derived EVs produced by, and within, normal and cancerous thyroid. We elucidated the global EV-microRNAs signature, the dynamic loading of microRNAs in EVs upon BRAFV600E induction, and their cellular origin. Finally, we propose that thyroid tumor-derived EV-microRNAs could support the establishment of a permissive immune microenvironment.

14.
Sci Rep ; 12(1): 12498, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35864120

RESUMO

Development of the pancreas is driven by an intrinsic program coordinated with signals from other cell types in the epithelial environment. These intercellular communications have been so far challenging to study because of the low concentration, localized production and diversity of the signals released. Here, we combined scRNAseq data with a computational interactomic approach to identify signals involved in the reciprocal interactions between the various cell types of the developing pancreas. This in silico approach yielded 40,607 potential ligand-target interactions between the different main pancreatic cell types. Among this vast network of interactions, we focused on three ligands potentially involved in communications between epithelial and endothelial cells. BMP7 and WNT7B, expressed by pancreatic epithelial cells and predicted to target endothelial cells, and SEMA6D, involved in the reverse interaction. In situ hybridization confirmed the localized expression of Bmp7 in the pancreatic epithelial tip cells and of Wnt7b in the trunk cells. On the contrary, Sema6d was enriched in endothelial cells. Functional experiments on ex vivo cultured pancreatic explants indicated that tip cell-produced BMP7 limited development of endothelial cells. This work identified ligands with a restricted tissular and cellular distribution and highlighted the role of BMP7 in the intercellular communications contributing to vessel development and organization during pancreas organogenesis.


Assuntos
Células Endoteliais , Organogênese , Diferenciação Celular/fisiologia , Células Endoteliais/metabolismo , Ligantes , Organogênese/fisiologia , Pâncreas/metabolismo
15.
Cancers (Basel) ; 14(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36230610

RESUMO

Papillary thyroid carcinoma (PTC) is the most frequent histological subtype of thyroid cancers (TC), and BRAFV600E genetic alteration is found in 60% of this endocrine cancer. This oncogene is associated with poor prognosis, resistance to radioiodine therapy, and tumor progression. Histological follow-up by anatomo-pathologists revealed that two-thirds of surgically-removed thyroids do not present malignant lesions. Thus, continued fundamental research into the molecular mechanisms of TC downstream of BRAFV600E remains central to better understanding the clinical behavior of these tumors. To study PTC, we used a mouse model in which expression of BRAFV600E was specifically switched on in thyrocytes by doxycycline administration. Upon daily intraperitoneal doxycycline injection, thyroid tissue rapidly acquired histological features mimicking human PTC. Transcriptomic analysis revealed major changes in immune signaling pathways upon BRAFV600E induction. Multiplex immunofluorescence confirmed the abundant recruitment of macrophages, among which a population of LYVE-1+/CD206+/STABILIN-1+ was dramatically increased. By genetically inactivating the gene coding for the scavenger receptor STABILIN-1, we showed an increase of CD8+ T cells in this in situ BRAFV600E-dependent TC. Lastly, we demonstrated the presence of CD206+/STABILIN-1+ macrophages in human thyroid pathologies. Altogether, we revealed the recruitment of immunosuppressive STABILIN-1 macrophages in a PTC mouse model and the interest to further study this macrophage subpopulation in human thyroid tissues.

16.
Am J Hematol ; 86(2): 209-13, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21264910

RESUMO

Despite substantial progress in the treatment of AML, a proportion of patients do not achieve first complete remission (1(st) CR) with the induction chemotherapy, and, among patients achieving it, a majority is expected to relapse within three years. As allogeneic hematopoietic stem cell transplantation has been established as the most effective form of antileukemic therapy in patients with AML in remission, many studies have focused on the reconstitution and the functionality of the innate immune system in this context, especially regarding cytotoxic effectors such as natural killer (NK) cells. On the contrary, very few data are available concerning the innate immune system of patients in 1st CR. Herein we investigated the phenotype of autologous NK cells of AML patients in 1st CR. We showed that immature NK cells were pre-eminent in the blood of these patients and that this immature phenotype was persistent during the first months after 1st CR.


Assuntos
Imunidade Inata , Células Matadoras Naturais/imunologia , Leucemia Mieloide Aguda/imunologia , Células Progenitoras Linfoides/imunologia , Receptores de Células Matadoras Naturais/metabolismo , Antígeno CD56/metabolismo , Seguimentos , Humanos , Células Matadoras Naturais/metabolismo , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/terapia , Contagem de Linfócitos , Células Progenitoras Linfoides/metabolismo , Pessoa de Meia-Idade , Subfamília C de Receptores Semelhantes a Lectina de Células NK/metabolismo , Receptores KIR/metabolismo , Indução de Remissão
17.
J Invest Dermatol ; 141(11): 2668-2678.e6, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33992648

RESUMO

Exacerbated IL-22 activity induces tissue inflammation and immune disorders such as psoriasis. However, because IL-22 is also essential for tissue repair and defense at barrier interfaces, targeting IL-22 activity to treat psoriasis bears the risk of deleterious effects at mucosal sites such as the gut. We previously showed in vitro that IL-22 signaling relies on IL-22 receptor alpha (IL-22Rα) Y-dependent and -independent pathways. The second depends on the C-terminal Y-less region of IL-22Rα and leads to a massive signal transducer and activator of transcription 3 (STAT3) activation. Because STAT3 activation is associated with the development of psoriasis, we hypothesized that the specific inhibition of the noncanonical STAT3 activation by the Y-less region of IL-22Rα could reduce psoriasis-like disease while leaving intact its tissue defense functions in the gut. We show that mice expressing a C-terminally truncated version of IL-22Rα (ΔCtermut/mut mice) are protected from the development of psoriasis-like dermatitis lesions induced by imiquimod to a lesser extent than Il22ra-/- mice. In contrast, only Il22ra-/- mice lose weight after Citrobacter rodentium infection. Altogether, our data suggest that specific targeting of the noncanonical STAT3 activation by IL-22 could serve to treat psoriasis-like skin inflammation without affecting IL-22‒dependent tissue repair or barrier defense at other sites.


Assuntos
Imiquimode/toxicidade , Psoríase/induzido quimicamente , Receptores de Interleucina/fisiologia , Fator de Transcrição STAT3/fisiologia , Animais , Citrobacter rodentium , Infecções por Enterobacteriaceae/imunologia , Interleucinas/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Interleucina 22
18.
Cancer Res ; 81(10): 2679-2689, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33602788

RESUMO

Pancreatic acinar cells are a cell type of origin for pancreatic cancer that become progressively less sensitive to tumorigenesis induced by oncogenic Kras mutations after birth. This sensitivity is increased when Kras mutations are combined with pancreatitis. Molecular mechanisms underlying these observations are still largely unknown. To identify these mechanisms, we generated the first CRISPR-edited mouse models that enable detection of wild-type and mutant KRAS proteins in vivo. Analysis of these mouse models revealed that more than 75% of adult acinar cells are devoid of detectable KRAS protein. In the 25% of acinar cells expressing KRAS protein, transcriptomic analysis highlighted a slight upregulation of the RAS and MAPK pathways. However, at the protein level, only marginal pancreatic expression of essential KRAS effectors, including C-RAF, was observed. The expression of KRAS and its effectors gradually decreased after birth. The low sensitivity of adult acinar cells to Kras mutations resulted from low expression of KRAS and its effectors and the subsequent lack of activation of RAS/MAPK pathways. Pancreatitis triggered expression of KRAS and its effectors as well as subsequent activation of downstream signaling; this induction required the activity of EGFR. Finally, expression of C-RAF in adult pancreas was required for pancreatic tumorigenesis. In conclusion, our study reveals that control of the expression of KRAS and its effectors regulates the sensitivity of acinar cells to transformation by oncogenic Kras mutations. SIGNIFICANCE: This study generates new mouse models to study regulation of KRAS during pancreatic tumorigenesis and highlights a novel mechanism through which pancreatitis sensitizes acinar cells to Kras mutations.


Assuntos
Células Acinares/patologia , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica , Mutação , Neoplasias Pancreáticas/patologia , Pancreatite/patologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Células Acinares/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Sistemas CRISPR-Cas , Proliferação de Células , Modelos Animais de Doenças , Receptores ErbB/genética , Receptores ErbB/metabolismo , Feminino , Humanos , Masculino , Camundongos , Neoplasias Pancreáticas/etiologia , Neoplasias Pancreáticas/metabolismo , Pancreatite/etiologia , Pancreatite/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Proteínas Proto-Oncogênicas p21(ras)/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Cell Immunol ; 264(2): 163-70, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20621290

RESUMO

Lenalidomide, a daughter molecule of Thalidomide, and IMIDs are immunomodulatory drugs that have been described as having immunomodulatory properties and anti-tumor activity. The effect of Lenalidomide towards Peripheral Blood Mononuclear Cells (PBMC) has been studied and direct effects towards T cells have been described, such as an increase of interferon-gamma (IFN-gamma) and interleukin (IL)-2 production. As a consequence, it has been also described that IL-2 subsequently activates Natural Killer (NK) cells. Nevertheless, direct effects of Lenalidomide on NK cells from healthy volunteers have never been described, if searched. Here we show that Lenalidomide can inhibit the production of IFN-gamma by NK cells from healthy donors. It also modifies the phenotype of NK cells through a decrease of the expression of Killer cell Immunoglobulin-like Receptors (KIRs) and NKp46. However, we did not detect consequence of these phenotype modifications on the cytotoxic potential of NK cells.


Assuntos
Antineoplásicos/farmacologia , Interferon gama/metabolismo , Células Matadoras Naturais/efeitos dos fármacos , Receptores KIR/metabolismo , Talidomida/análogos & derivados , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citotoxicidade Imunológica/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Humanos , Imunomodulação , Interferon gama/genética , Interferon gama/imunologia , Interleucina-2/genética , Interleucina-2/imunologia , Interleucina-2/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/patologia , Lenalidomida , Camundongos , Receptor 1 Desencadeador da Citotoxicidade Natural/genética , Receptor 1 Desencadeador da Citotoxicidade Natural/imunologia , Receptor 1 Desencadeador da Citotoxicidade Natural/metabolismo , Receptores KIR/genética , Receptores KIR/imunologia , Talidomida/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA