Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biophys J ; 122(11): 2112-2124, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-36482718

RESUMO

In cell membranes, proteins and lipids are organized into submicrometric nanodomains of varying sizes, shapes, and compositions, performing specific functions. Despite their biological importance, the detailed morphology of these nanodomains remains unknown. Not only can they hardly be observed by conventional microscopy due to their small size, but there is no full consensus on the theoretical models to describe their structuring and their shapes. Here, we use a combination of analytical calculations and Monte Carlo simulations based upon a model coupling membrane composition and shape to show that increasing protein concentration leads to an elongation of membrane nanodomains. The results are corroborated by single-particle tracking measurements on HIV receptors, whose level of expression in the membrane of specifically designed living cells can be tuned. These findings highlight that protein abundance can modulate nanodomain shape and potentially their biological function. Beyond biomembranes, this mesopatterning mechanism is of relevance in several soft-matter systems because it relies on generic physical arguments.


Assuntos
Microscopia , Imagem Individual de Molécula , Membrana Celular/metabolismo , Microdomínios da Membrana/metabolismo
2.
Biochem Biophys Res Commun ; 295(3): 610-5, 2002 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-12099682

RESUMO

Functionalized submicroscopic particles are currently used to label proteins or lipids at the surface of living cells for single particle tracking experiments. In many cases, it can be of crucial importance for the particle to be anchored to a single molecule. We have addressed this question for the labeling at the plasma membrane of NRK cells of the mu-opioid receptor bearing a T7 epitope at the N-terminus. Using biophysical methods we were able to prepare quasi-monovalent anti-T7 antibody conjugated gold colloids (40 nm diameter) leading to stable and specific binding to the receptor. The rational method, we report here, can be extended to design customized probes for the labeling of various tagged molecules.


Assuntos
Coloides , Ouro , Microscopia/métodos , Animais , Sítios de Ligação , Linhagem Celular , Membrana Celular/ultraestrutura , Ouro/química , Concentração de Íons de Hidrogênio , Fragmentos de Imunoglobulinas , Ponto Isoelétrico , Cinética , Lipídeos , Ratos , Receptores Opioides mu/metabolismo , Sódio/farmacologia , Ressonância de Plasmônio de Superfície , Fatores de Tempo , Transfecção
3.
Biophys J ; 84(1): 356-66, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12524289

RESUMO

Single particle tracking is a powerful tool for probing the organization and dynamics of the plasma membrane constituents. We used this technique to study the micro -opioid receptor belonging to the large family of the G-protein-coupled receptors involved with other partners in a signal transduction pathway. The specific labeling of the receptor coupled to a T7-tag at its N-terminus, stably expressed in fibroblastic cells, was achieved by colloidal gold coupled to a monoclonal anti T7-tag antibody. The lateral movements of the particles were followed by nanovideomicroscopy at 40 ms time resolution during 2 min with a spatial precision of 15 nm. The receptors were found to have either a slow or directed diffusion mode (10%) or a walking confined diffusion mode (90%) composed of a long-term random diffusion and a short-term confined diffusion, and corresponding to a diffusion confined within a domain that itself diffuses. The results indicate that the confinement is due to an effective harmonic potential generated by long-range attraction between the membrane proteins. A simple model for interacting membrane proteins diffusion is proposed that explains the variations with the domain size of the short-term and long-term diffusion coefficients.


Assuntos
Membrana Celular/ultraestrutura , Microscopia de Vídeo/métodos , Movimento (Física) , Nanotecnologia/métodos , Receptores Opioides mu/química , Receptores Opioides mu/ultraestrutura , Bacteriófago T7/química , Linhagem Celular , Membrana Celular/química , Membrana Celular/fisiologia , Difusão , Fibroblastos/química , Fibroblastos/fisiologia , Fibroblastos/ultraestrutura , Reguladores de Proteínas de Ligação ao GTP/química , Reguladores de Proteínas de Ligação ao GTP/fisiologia , Reguladores de Proteínas de Ligação ao GTP/ultraestrutura , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/fisiologia , Proteínas de Ligação ao GTP/ultraestrutura , Coloide de Ouro/química , Rim/química , Rim/fisiologia , Rim/ultraestrutura , Microscopia de Vídeo/instrumentação , Microesferas , Modelos Biológicos , Modelos Químicos , Nanotecnologia/instrumentação , Tamanho da Partícula , Receptores de Superfície Celular/química , Receptores de Superfície Celular/fisiologia , Receptores de Superfície Celular/ultraestrutura , Receptores Opioides mu/deficiência , Receptores Opioides mu/fisiologia , Transdução de Sinais/fisiologia , Coloração e Rotulagem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA