Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34050027

RESUMO

Recombinant influenza virus vaccines based on hemagglutinin (HA) hold the potential to accelerate production timelines and improve efficacy relative to traditional egg-based platforms. Here, we assess a vaccine adjuvant system comprised of immunogenic liposomes that spontaneously convert soluble antigens into a particle format, displayed on the bilayer surface. When trimeric H3 HA was presented on liposomes, antigen delivery to macrophages was improved in vitro, and strong functional antibody responses were induced following intramuscular immunization of mice. Protection was conferred against challenge with a heterologous strain of H3N2 virus, and naive mice were also protected following passive serum transfer. When admixed with the particle-forming liposomes, immunization reduced viral infection severity at vaccine doses as low as 2 ng HA, highlighting dose-sparing potential. In ferrets, immunization induced neutralizing antibodies that reduced the upper respiratory viral load upon challenge with a more modern, heterologous H3N2 viral strain. To demonstrate the flexibility and modular nature of the liposome system, 10 recombinant surface antigens representing distinct influenza virus strains were bound simultaneously to generate a highly multivalent protein particle that with 5 ng individual antigen dosing induced antibodies in mice that specifically recognized the constituent immunogens and conferred protection against heterologous H5N1 influenza virus challenge. Taken together, these results show that stable presentation of recombinant HA on immunogenic liposome surfaces in an arrayed fashion enhances functional immune responses and warrants further attention for the development of broadly protective influenza virus vaccines.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/imunologia , Lipossomos , Adjuvantes Imunológicos/administração & dosagem , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Relação Dose-Resposta Imunológica , Furões , Camundongos
2.
J Virol ; 96(19): e0100622, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36106872

RESUMO

Intranasal vaccination offers the potential advantage of needle-free prevention of respiratory pathogens such as influenza viruses with induction of mucosal immune responses. Optimal design of adjuvants and antigen delivery vehicles for intranasal delivery has not yet been well established. Here, we report that an adjuvant-containing nanoliposome antigen display system that converts soluble influenza hemagglutinin antigens into nanoparticles is effective for intranasal immunization. Intranasal delivery of nanoliposomes in mice delivers the particles to resident immune cells in the respiratory tract, inducing a mucosal response in the respiratory system as evidenced by nasal and lung localized IgA antibody production, while also producing systemic IgG antibodies. Intranasal vaccination with nanoliposome particles decorated with nanogram doses of hemagglutinin protected mice from homologous and heterologous H3N2 and H1N1 influenza virus challenge. IMPORTANCE A self-assembling influenza virus vaccine platform that seamlessly converts soluble antigens into nanoparticles is demonstrated with various H1N1 and H3N2 influenza antigens to protect mice against influenza virus challenge following intranasal vaccination. Mucosal immune responses following liposome delivery to lung antigen-presenting cells are demonstrated.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza , Imunidade nas Mucosas , Vacinas contra Influenza , Infecções por Orthomyxoviridae , Adjuvantes Imunológicos , Administração Intranasal , Animais , Anticorpos Antivirais/imunologia , Células Apresentadoras de Antígenos/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/administração & dosagem , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H3N2 , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/imunologia , Lipossomos , Camundongos , Nanopartículas , Infecções por Orthomyxoviridae/prevenção & controle , Vacinação
3.
Crit Rev Immunol ; 41(3): 57-82, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35378011

RESUMO

Influenza is a highly contagious respiratory virus that causes mild to severe respiratory illness, as well as death, and remains a serious threat to human health. Annual vaccination is the most cost-effective way to control influenza; however, the vaccine does not provide protection against emerging strains with epidemic and pandemic potential. Several antivirals have been developed to treat influenza but there is a rapid emergence of antiviral resistant strains. Therefore, there is an urgent need to understand the virus and its interactions with the host immune system so that novel strategies can be developed for prophylactic and therapeutic interventions. Innate lymphoid cells (ILCs), a family of immune cells present in the peripheral circulation and in mucosal tissues, play an important role in regulation of tissue homeostasis, inflammation, and immunity. This review examines the current understanding and therapeutic potential of ILCs during influenza virus infection in humans.


Assuntos
Vacinas contra Influenza , Influenza Humana , Humanos , Imunidade Inata , Vacinas contra Influenza/uso terapêutico , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Linfócitos , Vacinação
4.
Infect Immun ; 89(8): e0047120, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34031128

RESUMO

Streptococcus pneumoniae (pneumococcus) resides asymptomatically in the nasopharynx (NP) but can progress from benign colonizer to lethal pulmonary or systemic pathogen. Both viral infection and aging are risk factors for serious pneumococcal infections. Previous work established a murine model that featured the movement of pneumococcus from the nasopharynx to the lung upon nasopharyngeal inoculation with influenza A virus (IAV) but did not fully recapitulate the severe disease associated with human coinfection. We built upon this model by first establishing pneumococcal nasopharyngeal colonization, then inoculating both the nasopharynx and lungs with IAV. In young (2-month-old) mice, coinfection triggered bacterial dispersal from the nasopharynx into the lungs, pulmonary inflammation, disease, and mortality in a fraction of mice. In aged mice (18 to 24 months), coinfection resulted in earlier and more severe disease. Aging was not associated with greater bacterial burdens but rather with more rapid pulmonary inflammation and damage. Both aging and IAV infection led to inefficient bacterial killing by neutrophils ex vivo. Conversely, aging and pneumococcal colonization also blunted alpha interferon (IFN-α) production and increased pulmonary IAV burden. Thus, in this multistep model, IAV promotes pneumococcal pathogenicity by modifying bacterial behavior in the nasopharynx, diminishing neutrophil function, and enhancing bacterial growth in the lung, while pneumococci increase IAV burden, likely by compromising a key antiviral response. Thus, this model provides a means to elucidate factors, such as age and coinfection, that promote the evolution of S. pneumoniae from asymptomatic colonizer to invasive pathogen, as well as to investigate consequences of this transition on antiviral defense.


Assuntos
Envelhecimento , Coinfecção , Interações Hospedeiro-Patógeno , Infecções Pneumocócicas/etiologia , Streptococcus pneumoniae/patogenicidade , Viroses/virologia , Fatores Etários , Envelhecimento/imunologia , Animais , Modelos Animais de Doenças , Suscetibilidade a Doenças , Interações Hospedeiro-Patógeno/imunologia , Vírus da Influenza A , Camundongos , Infecções por Orthomyxoviridae/virologia , Virulência , Viroses/imunologia
5.
Proc Natl Acad Sci U S A ; 113(25): 6898-903, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27274071

RESUMO

Immunization strategies against commensal bacterial pathogens have long focused on eradicating asymptomatic carriage as well as disease, resulting in changes in the colonizing microflora with unknown future consequences. Additionally, current vaccines are not easily adaptable to sequence diversity and immune evasion. Here, we present a "smart" vaccine that leverages our current understanding of disease transition from bacterial carriage to infection with the pneumococcus serving as a model organism. Using conserved surface proteins highly expressed during virulent transition, the vaccine mounts an immune response specifically against disease-causing bacterial populations without affecting carriage. Aided by a delivery technology capable of multivalent surface display, which can be adapted easily to a changing clinical picture, results include complete protection against the development of pneumonia and sepsis during animal challenge experiments with multiple, highly variable, and clinically relevant pneumococcal isolates. The approach thus offers a unique and dynamic treatment option readily adaptable to other commensal pathogens.


Assuntos
Infecções Pneumocócicas/prevenção & controle , Vacinas Pneumocócicas/administração & dosagem , Animais , Anticorpos Antibacterianos/biossíntese , Biofilmes , Humanos , Camundongos , Infecções Pneumocócicas/imunologia , Vacinas Pneumocócicas/imunologia
6.
Nano Lett ; 17(2): 794-799, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28103040

RESUMO

We demonstrate a novel pathway to control and stabilize oxygen vacancies in complex transition-metal oxide thin films. Using atomic layer-by-layer pulsed laser deposition (PLD) from two separate targets, we synthesize high-quality single-crystalline CaMnO3 films with systematically varying oxygen vacancy defect formation energies as controlled by coherent tensile strain. The systematic increase of the oxygen vacancy content in CaMnO3 as a function of applied in-plane strain is observed and confirmed experimentally using high-resolution soft X-ray absorption spectroscopy (XAS) in conjunction with bulk-sensitive hard X-ray photoemission spectroscopy (HAXPES). The relevant defect states in the densities of states are identified and the vacancy content in the films quantified using the combination of first-principles theory and core-hole multiplet calculations with holistic fitting. Our findings open up a promising avenue for designing and controlling new ionically active properties and functionalities of complex transition-metal oxides via strain-induced oxygen-vacancy formation and ordering.

7.
Immunol Invest ; 46(8): 793-804, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29058547

RESUMO

Historically, volatile anesthetics have demonstrated interesting interactions with both the innate and adaptive immune systems. This review organizes these interactions into four phases: recognition, recruitment, response, and resolution. These phases represent a range of proinflammatory, inflammatory, and innate and adaptive immune regulatory responses. The interaction between volatile anesthetics and the immune system is discussed in the context of pathogenesis of infectious disease.


Assuntos
Imunidade Adaptativa , Anestésicos Inalatórios/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Imunidade Inata , Infecções/tratamento farmacológico , Animais , Humanos , Sistema Imunitário , Imunomodulação , Infecções/imunologia , Mediadores da Inflamação/metabolismo
8.
Infect Immun ; 83(8): 3325-33, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26056379

RESUMO

The siderophore aerobactin is the dominant siderophore produced by hypervirulent Klebsiella pneumoniae (hvKP) and was previously shown to be a major virulence factor in systemic infection. However, strains of hvKP commonly produce the additional siderophores yersiniabactin, salmochelin, and enterobactin. The roles of these siderophores in hvKP infection have not been optimally defined. To that end, site-specific gene disruptions were created in hvKP1 (wild type), resulting in the generation of hvKP1ΔiucA (aerobactin deficient), hvKP1ΔiroB (salmochelin deficient), hvKP1ΔentB (enterobactin and salmochelin deficient), hvKP1Δirp2 (yersiniabactin deficient), and hvKP1ΔentBΔirp2 (enterobactin, salmochelin, and yersiniabactin deficient). The growth/survival of these constructs was compared to that of their wild-type parent hvKP1 ex vivo in human ascites fluid, human serum, and human urine and in vivo in mouse systemic infection and pulmonary challenge models. Interestingly, in contrast to aerobactin, the inability to produce enterobactin, salmochelin, or yersiniabactin individually or in combination did not decrease the ex vivo growth/survival in human ascites or serum or decrease virulence in the in vivo infection models. Surprisingly, none of the siderophores increased growth in human urine. In human ascites fluid supplemented with exogenous siderophores, siderophores increased the growth of hvKP1ΔiucA, with the relative activity being enterobactin > aerobactin > yersiniabactin > salmochelin, suggesting that the contribution of aerobactin to virulence is dependent on both innate biologic activity and quantity produced. Taken together, these data confirm and extend a role for aerobactin as a critical virulence factor for hvKP. Since it appears that aerobactin production is a defining trait of hvKP strains, this factor is a potential antivirulence target.


Assuntos
Enterobactina/análogos & derivados , Enterobactina/metabolismo , Glucosídeos/metabolismo , Ácidos Hidroxâmicos/metabolismo , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/crescimento & desenvolvimento , Fenóis/metabolismo , Sideróforos/metabolismo , Tiazóis/metabolismo , Animais , Humanos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Klebsiella pneumoniae/patogenicidade , Masculino , Camundongos , Viabilidade Microbiana/efeitos dos fármacos , Virulência , Adulto Jovem
9.
Anesthesiology ; 123(3): 590-602, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26120770

RESUMO

BACKGROUND: To minimize the risk of pneumonia, many anesthesiologists delay anesthesia-requiring procedures when patients exhibit signs of viral upper respiratory tract infection. Postinfluenza secondary bacterial pneumonias (SBPs) are a major cause of morbidity and mortality. An increased host susceptibility to SBP postinfluenza has been attributed to physical damage to the pulmonary epithelium, but flu-induced effects on the immune system are being shown to also play an important role. The authors demonstrate that halothane mitigates the risk of SBP postflu through modulation of the effects of type I interferon (IFN). METHODS: Mice (n = 6 to 15) were exposed to halothane or ketamine and treated with influenza and Streptococcus pneumoniae. Bronchoalveolar lavage and lung homogenate were procured for the measurement of inflammatory cells, cytokines, chemokines, albumin, myeloperoxidase, and bacterial load. RESULTS: Halothane exposure resulted in decreased bacterial burden (7.9 ± 3.9 × 10 vs. 3.4 ± 1.6 × 10 colony-forming units, P < 0.01), clinical score (0.6 ± 0.2 vs. 2.3 ± 0.2, P < 0.0001), and lung injury (as measured by bronchoalveolar lavage albumin, 1.5 ± 0.7 vs. 6.8 ± 1.6 mg/ml, P < 0.01) in CD-1 mice infected with flu for 7 days and challenged with S. pneumoniae on day 6 postflu. IFN receptor A1 knockout mice similarly infected with flu and S. pneumoniae, but not exposed to halothane, demonstrated a reduction of lung bacterial burden equivalent to that achieved in halothane-exposed wild-type mice. CONCLUSION: These findings indicate that the use of halogenated volatile anesthetics modulates the type I IFN response to influenza and enhance postinfection antibacterial immunity.


Assuntos
Modelos Animais de Doenças , Halotano/administração & dosagem , Interferon Tipo I/antagonistas & inibidores , Infiltração de Neutrófilos/efeitos dos fármacos , Infecções por Orthomyxoviridae/tratamento farmacológico , Pneumonia Bacteriana/tratamento farmacológico , Anestésicos Inalatórios/administração & dosagem , Animais , Cães , Vírus da Influenza A Subtipo H1N1 , Interferon Tipo I/metabolismo , Células Madin Darby de Rim Canino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infiltração de Neutrófilos/fisiologia , Infecções por Orthomyxoviridae/complicações , Pneumonia Bacteriana/etiologia , Streptococcus pneumoniae
10.
J Immunol ; 190(4): 1714-24, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23296708

RESUMO

Recruitment of neutrophils and release of reactive oxygen species are considered to be major pathogenic components driving acute lung injury (ALI). However, NADPH oxidase, the major source of reactive oxygen species in activated phagocytes, can paradoxically limit inflammation and injury. We hypothesized that NADPH oxidase protects against ALI by limiting neutrophilic inflammation and activating Nrf2, a transcriptional factor that induces antioxidative and cytoprotective pathways. Our objective was to delineate the roles of NADPH oxidase and Nrf2 in modulating acute lung inflammation and injury in clinically relevant models of acute gastric aspiration injury, a major cause of ALI. Acid aspiration caused increased ALI (as assessed by bronchoalveolar lavage fluid albumin concentration) in both NADPH oxidase-deficient mice and Nrf2(-/-) mice compared with wild-type mice. NADPH oxidase reduced airway neutrophil accumulation, but Nrf2 decreased ALI without affecting neutrophil recovery. Acid injury resulted in a 120-fold increase in mitochondrial DNA, a proinflammatory and injurious product of cellular necrosis, in cell-free bronchoalveolar lavage fluid. Pharmacologic activation of Nrf2 by the triterpenoid 1-[2-cyano-3-,12-dioxooleana-1,9 (11)-dien-28-oyl]imidazole limited aspiration-induced ALI in wild-type mice and reduced endothelial cell injury caused by mitochondrial extract-primed human neutrophils, leading to the conclusion that NADPH oxidase and Nrf2 have coordinated, but distinct, functions in modulating inflammation and injury. These results also point to Nrf2 as a therapeutic target to limit ALI by attenuating neutrophil-induced cellular injury.


Assuntos
Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/metabolismo , Mediadores da Inflamação/fisiologia , NADPH Oxidases/fisiologia , Fator 2 Relacionado a NF-E2/fisiologia , Lesão Pulmonar Aguda/enzimologia , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Células Endoteliais da Veia Umbilical Humana , Humanos , Mediadores da Inflamação/metabolismo , Intubação Intratraqueal , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidases/deficiência , NADPH Oxidases/metabolismo , Fator 2 Relacionado a NF-E2/deficiência , Fator 2 Relacionado a NF-E2/metabolismo , Infiltração de Neutrófilos/imunologia , Neutrófilos/enzimologia , Neutrófilos/imunologia , Neutrófilos/patologia
11.
J Immunol ; 190(8): 4175-84, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23509361

RESUMO

Chronic granulomatous disease, an inherited disorder of the NADPH oxidase in which phagocytes are defective in the generation of superoxide anion and downstream reactive oxidant species, is characterized by severe bacterial and fungal infections and excessive inflammation. Although NADPH oxidase isoforms exist in several lineages, reactive oxidant generation is greatest in neutrophils, where NADPH oxidase has been deemed vital for pathogen killing. In contrast, the function and importance of NADPH oxidase in macrophages are less clear. Therefore, we evaluated susceptibility to pulmonary aspergillosis in globally NADPH oxidase-deficient mice versus transgenic mice with monocyte/macrophage-targeted NADPH oxidase activity. We found that the lethal inoculum was >100-fold greater in transgenic versus globally NADPH oxidase-deficient mice. Consistent with these in vivo results, NADPH oxidase in mouse alveolar macrophages limited germination of phagocytosed Aspergillus fumigatus spores. Finally, globally NADPH oxidase-deficient mice developed exuberant neutrophilic lung inflammation and proinflammatory cytokine responses to zymosan, a fungal cell wall-derived product composed principally of particulate ß-glucans, whereas inflammation in transgenic and wild-type mice was mild and transient. Taken together, our studies identify a central role for monocyte/macrophage NADPH oxidase in controlling fungal infection and in limiting acute lung inflammation.


Assuntos
Aspergillus fumigatus/imunologia , Macrófagos Alveolares/enzimologia , Macrófagos Alveolares/imunologia , Monócitos/enzimologia , Monócitos/imunologia , NADPH Oxidases/fisiologia , Doença Aguda , Animais , Aspergilose/enzimologia , Aspergilose/imunologia , Aspergilose/patologia , Predisposição Genética para Doença , Inflamação/enzimologia , Inflamação/microbiologia , Inflamação/prevenção & controle , Pulmão/enzimologia , Pulmão/imunologia , Pulmão/microbiologia , Macrófagos Alveolares/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Monócitos/microbiologia , NADPH Oxidases/deficiência , NADPH Oxidases/genética , Zimosan/farmacologia
12.
J Surg Res ; 191(1): 214-23, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24814199

RESUMO

BACKGROUND: Gastric aspiration is a significant cause of acute lung injury and acute respiratory distress syndrome. Environmental risk factors, such as a diet high in proinflammatory advanced glycation end-products (AGEs), may render some patients more susceptible to lung injury after aspiration. We hypothesized that high dietary AGEs increase its pulmonary receptor, RAGE, producing an amplified pulmonary inflammatory response in the presence of high mobility group box 1 (HMGB1), a RAGE ligand and an endogenous signal of epithelial cell injury after aspiration. MATERIALS AND METHODS: CD-1 mice were fed either a low AGE or high AGE diet for 4 wk. After aspiration injury with acidified small gastric particles, bronchoalveolar lavage and whole-lung tissue samples were collected at 5 min, 1 h, 5 h, and 24 h after injury. RAGE, soluble RAGE (sRAGE), HMGB1, cytokine and chemokine concentrations, albumin levels, neutrophil influx, and lung myeloperoxidase activity were measured. RESULTS: We observed that high AGE-fed mice exhibited greater pulmonary RAGE levels before aspiration and increased bronchoalveolar lavage sRAGE levels after aspiration compared with low AGE-fed mice. Lavage HMGB1 levels rose immediately after aspiration, peaking at 1 h, and strongly correlated with sRAGE levels in both dietary groups. High AGE-fed mice demonstrated higher cytokine and chemokine levels with increased pulmonary myeloperoxidase activity over 24 h versus low AGE-fed mice. CONCLUSIONS: This study indicates that high dietary AGEs can increase pulmonary RAGE, augmenting the inflammatory response to aspiration in the presence of endogenous damage signals such as HMGB1.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Proteína HMGB1/metabolismo , Pneumonia Aspirativa/metabolismo , Receptores Imunológicos/metabolismo , Lesão Pulmonar Aguda/imunologia , Albuminas/metabolismo , Ração Animal , Animais , Líquido da Lavagem Broncoalveolar , Permeabilidade Capilar , Citocinas/metabolismo , Produtos Finais de Glicação Avançada/farmacologia , Masculino , Camundongos , Neutrófilos/metabolismo , Peroxidase/metabolismo , Pneumonia Aspirativa/imunologia , Receptor para Produtos Finais de Glicação Avançada , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo
13.
Cell Rep Med ; 5(3): 101433, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38401547

RESUMO

Inclusion of defined quantities of the two major surface proteins of influenza virus, hemagglutinin (HA) and neuraminidase (NA), could benefit seasonal influenza vaccines. Recombinant HA and NA multimeric proteins derived from three influenza serotypes, H1N1, H3N2, and type B, are surface displayed on nanoliposomes co-loaded with immunostimulatory adjuvants, generating "hexaplex" particles that are used to immunize mice. Protective immune responses to hexaplex liposomes involve functional antibody elicitation against each included antigen, comparable to vaccination with monovalent antigen particles. When compared to contemporary recombinant or adjuvanted influenza virus vaccines, hexaplex liposomes perform favorably in many areas, including antibody production, T cell activation, protection from lethal virus challenge, and protection following passive sera transfer. Based on these results, hexaplex liposomes warrant further investigation as an adjuvanted recombinant influenza vaccine formulation.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Camundongos , Animais , Humanos , Hemaglutininas , Neuraminidase/genética , Vírus da Influenza A Subtipo H3N2 , Lipossomos , Adjuvantes Imunológicos , Vacinas Sintéticas
14.
Am J Respir Cell Mol Biol ; 46(6): 797-806, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22281985

RESUMO

Lung contusion (LC), commonly observed in patients with thoracic trauma is a leading risk factor for development of acute lung injury/acute respiratory distress syndrome. Previously, we have shown that CC chemokine ligand (CCL)-2, a monotactic chemokine abundant in the lungs, is significantly elevated in LC. This study investigated the nature of protection afforded by CCL-2 in acute lung injury/acute respiratory distress syndrome during LC, using rats and CC chemokine receptor (CCR) 2 knockout (CCR2(-/-)) mice. Rats injected with a polyclonal antibody to CCL-2 showed higher levels of albumin and IL-6 in the bronchoalveolar lavage and myeloperoxidase in the lung tissue after LC. Closed-chest bilateral LC demonstrated CCL-2 localization in alveolar macrophages (AMs) and epithelial cells. Subsequent experiments performed using a murine model of LC showed that the extent of injury, assessed by pulmonary compliance and albumin levels in the bronchoalveolar lavage, was higher in the CCR2(-/-) mice when compared with the wild-type (WT) mice. We also found increased release of IL-1ß, IL-6, macrophage inflammatory protein-1, and keratinocyte chemoattractant, lower recruitment of AMs, and higher neutrophil infiltration and phagocytic activity in CCR2(-/-) mice at 24 hours. However, impaired phagocytic activity was observed at 48 hours compared with the WT. Production of CCL-2 and macrophage chemoattractant protein-5 was increased in the absence of CCR2, thus suggesting a negative feedback mechanism of regulation. Isolated AMs in the CCR2(-/-) mice showed a predominant M1 phenotype compared with the predominant M2 phenotype in WT mice. Taken together, the above results show that CCL-2 is functionally important in the down-modulation of injury and inflammation in LC.


Assuntos
Quimiocina CCL2/fisiologia , Contusões/fisiopatologia , Inflamação/fisiopatologia , Lesão Pulmonar/fisiopatologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fagocitose , Ratos , Ratos Long-Evans
15.
Nanomedicine ; 7(1): 88-96, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20887813

RESUMO

The ability to provide targeted therapeutic delivery in the lung would be a major advancement in pharmacological treatments for many pulmonary diseases. Critical issues for such successful delivery would require the ability to target specific cell types, minimize toxicity (e.g., inflammatory response), and deliver therapeutic levels of drugs. We report here on the ability of nanoconjugates of CdSe/CdS/ZnS quantum dots (QDs) and doxorubicin (Dox) to target alveolar macrophages (aMØs), cells that play a critical role in the pathogenesis of inflammatory lung injuries. Confocal imaging showed the release of Dox from the QD-Dox nanoconjugate, as was evident by its accumulation in the cell nucleus and induction of apoptosis, implying that the drug retains its bioactivity after coupling to the nanoparticle. Inflammatory injury parameters (albumin leakage, proinflammatory cytokines, and neutrophil infiltration) were recorded after in vivo administration of QD-Dox and Dox, observing no significant effect after QD-Dox treatment compared with Dox. These results demonstrate that nanoparticle platforms can provide targeted macrophage-selective therapy for the treatment of pulmonary disease. FROM THE CLINICAL EDITOR: Pulmonary inflammatory diseases still often remain challenging to treat, despite decades of advances and several available agents. In this study, a quantum dot-based alveolar delivery system is presented, targeting macrophages with doxorubicin.


Assuntos
Doxorrubicina/química , Inflamação/tratamento farmacológico , Macrófagos Alveolares/efeitos dos fármacos , Pontos Quânticos , Animais , Lavagem Broncoalveolar , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacocinética , Doxorrubicina/uso terapêutico , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Ratos , Ratos Long-Evans
16.
Sci Adv ; 7(2)2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33523988

RESUMO

Titanium monoxide (TiO), an important member of the rock salt 3d transition-metal monoxides, has not been studied in the stoichiometric single-crystal form. It has been challenging to prepare stoichiometric TiO due to the highly reactive Ti2+ We adapt a closely lattice-matched MgO(001) substrate and report the successful growth of single-crystalline TiO(001) film using molecular beam epitaxy. This enables a first-time study of stoichiometric TiO thin films, showing that TiO is metal but in proximity to Mott insulating state. We observe a transition to the superconducting phase below 0.5 K close to that of Ti metal. Density functional theory (DFT) and a DFT-based tight-binding model demonstrate the extreme importance of direct Ti-Ti bonding in TiO, suggesting that similar superconductivity exists in TiO and Ti metal. Our work introduces the new concept that TiO behaves more similar to its metal counterpart, distinguishing it from other 3d transition-metal monoxides.

17.
Adv Sci (Weinh) ; 8(16): e2100693, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34189857

RESUMO

Influenza infections cause several million cases of severe respiratory illness, hospitalizations, and hundreds of thousands of deaths globally. Secondary infections are a leading cause of influenza's high morbidity and mortality, and significantly factored into the severity of the 1918, 1968, and 2009 pandemics. Furthermore, there is an increased incidence of other respiratory infections even in vaccinated individuals during influenza season. Putative mechanisms responsible for vaccine failures against influenza as well as other respiratory infections during influenza season are investigated. Peripheral blood mononuclear cells (PBMCs) are used from influenza vaccinated individuals to assess antigen-specific responses to influenza, measles, and varicella. The observations made in humans to a mouse model to unravel the mechanism is confirmed and extended. Infection with influenza virus suppresses an ongoing adaptive response to vaccination against influenza as well as other respiratory pathogens, i.e., Adenovirus and Streptococcus pneumoniae by preferentially infecting and killing activated lymphocytes which express elevated levels of sialic acid receptors. These findings propose a new mechanism for the high incidence of secondary respiratory infections due to bacteria and other viruses as well as vaccine failures to influenza and other respiratory pathogens even in immune individuals due to influenza viral infections.


Assuntos
Imunidade Adaptativa/imunologia , Influenza Humana/imunologia , Animais , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C
18.
Commun Biol ; 4(1): 102, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33483601

RESUMO

Pro-inflammatory M1 macrophage polarization is associated with microbicidal and antitumor responses. We recently described APOBEC3A-mediated cytosine-to-uracil (C > U) RNA editing during M1 polarization. However, the functional significance of this editing is unknown. Here we find that APOBEC3A-mediated cellular RNA editing can also be induced by influenza or Maraba virus infections in normal human macrophages, and by interferons in tumor-associated macrophages. Gene knockdown and RNA_Seq analyses show that APOBEC3A mediates C>U RNA editing of 209 exonic/UTR sites in 203 genes during M1 polarization. The highest level of nonsynonymous RNA editing alters a highly-conserved amino acid in THOC5, which encodes a nuclear mRNA export protein implicated in M-CSF-driven macrophage differentiation. Knockdown of APOBEC3A reduces IL6, IL23A and IL12B gene expression, CD86 surface protein expression, and TNF-α, IL-1ß and IL-6 cytokine secretion, and increases glycolysis. These results show a key role of APOBEC3A cytidine deaminase in transcriptomic and functional polarization of M1 macrophages.


Assuntos
Citidina Desaminase/metabolismo , Macrófagos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas/metabolismo , Edição de RNA , Humanos , Cultura Primária de Células
19.
Mol Ther Nucleic Acids ; 19: 1413-1422, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32160710

RESUMO

Retinoic acid-inducible gene-I (RIG-I) is a cytosolic pathogen sensor that is crucial against a number of viral infections. Many viruses have evolved to inhibit pathogen sensors to suppress host innate immune responses. In the case of influenza, nonstructural protein 1 (NS1) suppresses RIG-I function, leading to viral replication, morbidity, and mortality. We show that silencing NS1 with in-vitro-transcribed 5'-triphosphate containing NS1 short hairpin RNA (shRNA) (5'-PPP-NS1shRNA), designed using the conserved region of a number of influenza viruses, not only prevented NS1 expression but also induced RIG-I activation and type I interferon (IFN) expression, resulting in an antiviral state leading to inhibition of influenza virus replication in vitro. In addition, administration of 5'-PPP-NS1shRNA in prophylactic and therapeutic settings resulted in significant inhibition of viral replication following viral challenge in vivo in mice with corresponding increases of RIG-I, IFN-ß, and IFN-λ, as well as a decrease in NS1 expression.

20.
Adv Mater ; 32(50): e2005637, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33111375

RESUMO

The receptor-binding domain (RBD) of the SARS-CoV-2 spike protein is a candidate vaccine antigen that binds angiotensin-converting enzyme 2 (ACE2), leading to virus entry. Here, it is shown that rapid conversion of recombinant RBD into particulate form via admixing with liposomes containing cobalt-porphyrin-phospholipid (CoPoP) potently enhances the functional antibody response. Antigen binding via His-tag insertion into the CoPoP bilayer results in a serum-stable and conformationally intact display of the RBD on the liposome surface. Compared to other vaccine formulations, immunization using CoPoP liposomes admixed with recombinant RBD induces multiple orders of magnitude higher levels of antibody titers in mice that neutralize pseudovirus cell entry, block RBD interaction with ACE2, and inhibit live virus replication. Enhanced immunogenicity can be accounted for by greater RBD uptake into antigen-presenting cells in particulate form and improved immune cell infiltration in draining lymph nodes. QS-21 inclusion in the liposomes results in an enhanced antigen-specific polyfunctional T cell response. In mice, high dose immunization results in minimal local reactogenicity, is well-tolerated, and does not elevate serum cobalt levels. Taken together, these results confirm that particulate presentation strategies for the RBD immunogen should be considered for inducing strongly neutralizing antibody responses against SARS-CoV-2.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Enzima de Conversão de Angiotensina 2/imunologia , Animais , Sítios de Ligação , COVID-19/imunologia , Feminino , Células HEK293 , Humanos , Imunogenicidade da Vacina/imunologia , Camundongos , Pandemias/prevenção & controle , Coelhos , Vacinação , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA