Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
2.
Chembiochem ; 23(24): e202200595, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36269004

RESUMO

In 2019 four groups reported independently the development of a simplified enzymatic access to the diphosphates (IPP and DMAPP) of isopentenol and dimethylallyl alcohol (IOH and DMAOH). The former are the two universal precursors of all terpenes. We report here on an improved version of what we call the terpene mini-path as well as its use in enzymatic cascades in combination with various transferases. The goal of this study is to demonstrate the in vitro utility of the TMP in, i) synthesizing various natural terpenes, ii) revealing the product selectivity of an unknown terpene synthase, or iii) generating unnatural cyclobutylated terpenes.


Assuntos
Alquil e Aril Transferases , Terpenos , Transferases , Difosfatos
3.
Proc Natl Acad Sci U S A ; 115(19): E4358-E4367, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29686076

RESUMO

Trigonelline (TG; N-methylnicotinate) is a ubiquitous osmolyte. Although it is known that it can be degraded, the enzymes and metabolites have not been described so far. In this work, we challenged the laboratory model soil-borne, gram-negative bacterium Acinetobacter baylyi ADP1 (ADP1) for its ability to grow on TG and we identified a cluster of catabolic, transporter, and regulatory genes. We dissected the pathway to the level of enzymes and metabolites, and proceeded to in vitro reconstruction of the complete pathway by six purified proteins. The four enzymatic steps that lead from TG to methylamine and succinate are described, and the structures of previously undescribed metabolites are provided. Unlike many aromatic compounds that undergo hydroxylation prior to ring cleavage, the first step of TG catabolism proceeds through direct cleavage of the C5-C6 bound, catalyzed by a flavin-dependent, two-component oxygenase, which yields (Z)-2-((N-methylformamido)methylene)-5-hydroxy-butyrolactone (MFMB). MFMB is then oxidized into (E)-2-((N-methylformamido) methylene) succinate (MFMS), which is split up by a hydrolase into carbon dioxide, methylamine, formic acid, and succinate semialdehyde (SSA). SSA eventually fuels up the TCA by means of an SSA dehydrogenase, assisted by a Conserved Hypothetical Protein. The cluster is conserved across marine, soil, and plant-associated bacteria. This emphasizes the role of TG as a ubiquitous nutrient for which an efficient microbial catabolic toolbox is available.


Assuntos
Acinetobacter , Alcaloides/metabolismo , Genoma Bacteriano , Anotação de Sequência Molecular , Família Multigênica , Acinetobacter/enzimologia , Acinetobacter/genética , Cromatografia Líquida , Espectrometria de Massas
4.
Nat Chem Biol ; 13(8): 858-866, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28581482

RESUMO

Experimental validation of enzyme function is crucial for genome interpretation, but it remains challenging because it cannot be scaled up to accommodate the constant accumulation of genome sequences. We tackled this issue for the MetA and MetX enzyme families, phylogenetically unrelated families of acyl-L-homoserine transferases involved in L-methionine biosynthesis. Members of these families are prone to incorrect annotation because MetX and MetA enzymes are assumed to always use acetyl-CoA and succinyl-CoA, respectively. We determined the enzymatic activities of 100 enzymes from diverse species, and interpreted the results by structural classification of active sites based on protein structure modeling. We predict that >60% of the 10,000 sequences from these families currently present in databases are incorrectly annotated, and suggest that acetyl-CoA was originally the sole substrate of these isofunctional enzymes, which evolved to use exclusively succinyl-CoA in the most recent bacteria. We also uncovered a divergent subgroup of MetX enzymes in fungi that participate only in L-cysteine biosynthesis as O-succinyl-L-serine transferases.


Assuntos
Acetiltransferases/metabolismo , Evolução Molecular , Metionina/biossíntese , Acinetobacter/enzimologia , Escherichia coli/enzimologia
5.
Biotechnol Bioeng ; 116(11): 2852-2863, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31389000

RESUMO

The efficiency of a versatile in vivo cascade involving a promiscuous alcohol dehydrogenase, obtained from a biodiversity search, and a Baeyer-Villiger monooxygenase was enhanced by the independent control of the production level of each enzyme to produce ε-caprolactone and 3,4-dihydrocoumarin. This goal was achieved by adjusting the copy number per cell of Escherichia coli plasmids. We started from the observation that this number generally correlates with the amount of produced enzyme and demonstrated that an in vivo multi-enzymatic system can be improved by the judicious choice of plasmid, the lower activity of the enzyme that drives the limiting step being counter-balanced by a higher concentration. Using a preconception-free approach to the choice of the plasmid type, we observed positive and negative synergetic effects, sometimes unexpected and depending on the enzyme and plasmid combinations. Experimental optimization of the culture conditions allowed us to obtain the complete conversion of cyclohexanol (16 mM) and 1-indanol (7.5 mM) at a 0.5-L scale. The yield for the conversion of cyclohexanol was 80% (0.7 g ε-caprolactone, for the productivity of 244 mg·L -1 ·h -1 ) and that for 1-indanol 60% (0.3 g 3,4-dihydrocoumarin, for the productivity of 140 mg·L -1 ·h -1 ).


Assuntos
Caproatos/metabolismo , Cumarínicos/metabolismo , Escherichia coli/metabolismo , Lactonas/metabolismo , Engenharia Metabólica , Catálise , Escherichia coli/genética , Proteínas de Escherichia coli/biossíntese , Proteínas de Escherichia coli/genética , Oxigenases de Função Mista/biossíntese , Oxigenases de Função Mista/genética
6.
Microb Cell Fact ; 18(1): 23, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30709396

RESUMO

BACKGROUND: Terpenes are industrially relevant natural compounds the biosynthesis of which relies on two well-established-mevalonic acid (MVA) and methyl erythritol phosphate (MEP)-pathways. Both pathways are widely distributed in all domains of life, the former is predominantly found in eukaryotes and archaea and the latter in eubacteria and chloroplasts. These two pathways supply isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), the universal building blocks of terpenes. RESULTS: The potential to establish a semisynthetic third pathway to access these precursors has been investigated in the present work. We have tested the ability of a collection of 93 isopentenyl phosphate kinases (IPK) from the biodiversity to catalyse the double phosphorylation of isopentenol and dimethylallyl alcohol to give, respectively IPP and DMAPP. Five IPKs selected from a preliminary in vitro screening were evaluated in vivo in an engineered chassis E. coli strain producing carotenoids. The recombinant pathway leading to the synthesis of neurosporene and lycopene, allows a simple colorimetric assay to test the potential of IPKs for the synthesis of IPP and DMAPP starting from the corresponding alcohols. The best candidate identified was the IPK from Methanococcoides burtonii (UniProt ID: Q12TH9) which improved carotenoid and neurosporene yields ~ 18-fold and > 45-fold, respectively. In our lab scale conditions, titres of neurosporene reached up to 702.1 ± 44.7 µg/g DCW and 966.2 ± 61.6 µg/L. A scale up to 4 L in-batch cultures reached to 604.8 ± 68.3 µg/g DCW and 430.5 ± 48.6 µg/L without any optimisation shown its potential for future applications. Neurosporene was almost the only carotenoid produced under these conditions, reaching ~ 90% of total carotenoids both at lab and batch scales thus offering an easy access to this sophisticated molecule. CONCLUSION: IPK biodiversity was screened in order to identify IPKs that optimize the final carotenoid content of engineered E. coli cells expressing the lycopene biosynthesis pathway. By simply changing the IPK and without any other metabolic engineering we improved the neurosporene content by more than 45 fold offering a new biosynthetic access to this molecule of upmost importance.


Assuntos
Carotenoides/biossíntese , Engenharia Metabólica/métodos , Terpenos/metabolismo , Archaea/metabolismo , Bactérias/metabolismo , Técnicas de Cultura Celular por Lotes , Biodiversidade , Carotenoides/análise , Eritritol/metabolismo , Escherichia coli/metabolismo , Hemiterpenos/metabolismo , Ácido Mevalônico/metabolismo , Compostos Organofosforados/metabolismo
7.
Appl Microbiol Biotechnol ; 102(13): 5569-5583, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29728726

RESUMO

Most of the "repressor, open reading frame, kinase" (ROK) proteins already characterized so far, and exhibiting a kinase activity, take restrictedly D-glucose as substrate. By exploring the sequenced bacterial diversity, 61 ATP-dependent kinases belonging to the ROK family have been identified and experimentally assayed for the phosphorylation of hexoses. These kinases were mainly found to be thermotolerant and highly active toward D-mannose and D-fructose with notable activities toward D-tagatose. Among them, the ATP-dependent kinase from the mesophile Streptococcus mitis (named ScrKmitis) was biochemically characterized and its substrate spectrum further studied. This enzyme possessed impressive catalytic efficiencies toward D-mannose and D-fructose of 1.5 106 s-1 M-1 and 2.7 105 s-1 M-1, respectively, but also significant ones toward D-tagatose (3.5 102 s-1 M-1) and the unnatural monosaccharides D-altrose (1.1 104 s-1 M-1) and D-talose (3.4 102 s-1 M-1). Specific activities measured for all hexoses showed a high stereopreference for D- over L-series. As proof of concept, 8 hexoses were phosphorylated in moderate to good yields, some of them described for the first time like L-sorbose-5-phosphate unusually phosphorylated in position 5. Its thermotolerance, its wide pH tolerance (from 7 to 10), and temperature range (> 85% activity between 40 and 70 °C) open the way to applications in the enzymatic synthesis of monophosphorylated hexoses.


Assuntos
Frutoquinases/metabolismo , Streptococcus mitis/enzimologia , Fosforilação , Especificidade por Substrato , Açúcares/química , Açúcares/metabolismo , Temperatura
8.
Angew Chem Int Ed Engl ; 57(19): 5467-5471, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29542859

RESUMO

Dihydroxyacetone phosphate (DHAP)-dependent rhamnulose aldolases display an unprecedented versatility for ketones as electrophile substrates. We selected and characterized a rhamnulose aldolase from Bacteroides thetaiotaomicron (RhuABthet) to provide a proof of concept. DHAP was added as a nucleophile to several α-hydroxylated ketones used as electrophiles. This aldol addition was stereoselective and produced branched-chain monosaccharide adducts with a tertiary alcohol moiety. Several aldols were readily obtained in good to excellent yields (from 76 to 95 %). These results contradict the general view that aldehydes are the only electrophile substrates for DHAP-dependent aldolases and provide a new C-C bond-forming enzyme for stereoselective synthesis of tertiary alcohols.


Assuntos
Aldeído Liases/metabolismo , Fosfato de Di-Hidroxiacetona/metabolismo , Cetonas/metabolismo , Açúcares/metabolismo , Aldeído Liases/química , Bacteroides thetaiotaomicron/enzimologia , Fosfato de Di-Hidroxiacetona/química , Cetonas/química , Estrutura Molecular , Estereoisomerismo , Especificidade por Substrato , Açúcares/química
9.
Nat Chem Biol ; 10(1): 42-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24240508

RESUMO

Millions of protein database entries are not assigned reliable functions, preventing the full understanding of chemical diversity in living organisms. Here, we describe an integrated strategy for the discovery of various enzymatic activities catalyzed within protein families of unknown or little known function. This approach relies on the definition of a generic reaction conserved within the family, high-throughput enzymatic screening on representatives, structural and modeling investigations and analysis of genomic and metabolic context. As a proof of principle, we investigated the DUF849 Pfam family and unearthed 14 potential new enzymatic activities, leading to the designation of these proteins as ß-keto acid cleavage enzymes. We propose an in vivo role for four enzymatic activities and suggest key residues for guiding further functional annotation. Our results show that the functional diversity within a family may be largely underestimated. The extension of this strategy to other families will improve our knowledge of the enzymatic landscape.


Assuntos
Enzimas/metabolismo , Enzimas/química , Conformação Proteica
10.
Appl Microbiol Biotechnol ; 100(1): 397-408, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26452497

RESUMO

In the course of a project devoted to the stereoselective synthesis of non-proteinogenic α-amino acids using α-transaminases (α-TA), we report the design and optimization of generic high-throughput continuous assays for the screening of α-TA libraries. These assays are based on the use of L- or D-cysteine sulfinic acid (CSA) as irreversible amino donor and subsequent sulfite titration by colorimetry. The assays' quality was assessed under screening conditions. Hit selection thresholds were accurately determined for every couple of substrates and a library of 232 putative transaminases expressed in Escherichia coli host cells was screened. The reported high throughput screening assays proved very sensitive allowing the detection with high confidence of activities as low as 10 µU (i.e., 0.01 nmol substrate converted per min). The assays were also evidenced to be stereochemically discriminant since L-CSA and D-CSA allowed the exclusive detection of L-TA and D-TA, respectively. These generic assays thus allow testing the stereoselective conversion of a wide range of α-keto acids into α-amino acids of interest. As a proof of principle, the use of 2-oxo-4-phenylbutyric acid as acceptor substrate led to the identification of 54 new α-TA offering an access to valuable L- or D-homophenylalanine.


Assuntos
Aminoácidos/metabolismo , Colorimetria/métodos , Ensaios de Triagem em Larga Escala/métodos , Transaminases/análise , Cisteína/análogos & derivados , Cisteína/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Biblioteca Gênica , Sulfitos/metabolismo
12.
Nat Commun ; 15(1): 4933, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858403

RESUMO

Native amine dehydrogenases offer sustainable access to chiral amines, so the search for scaffolds capable of converting more diverse carbonyl compounds is required to reach the full potential of this alternative to conventional synthetic reductive aminations. Here we report a multidisciplinary strategy combining bioinformatics, chemoinformatics and biocatalysis to extensively screen billions of sequences in silico and to efficiently find native amine dehydrogenases features using computational approaches. In this way, we achieve a comprehensive overview of the initial native amine dehydrogenase family, extending it from 2,011 to 17,959 sequences, and identify native amine dehydrogenases with non-reported substrate spectra, including hindered carbonyls and ethyl ketones, and accepting methylamine and cyclopropylamine as amine donor. We also present preliminary model-based structural information to inform the design of potential (R)-selective amine dehydrogenases, as native amine dehydrogenases are mostly (S)-selective. This integrated strategy paves the way for expanding the resource of other enzyme families and in highlighting enzymes with original features.


Assuntos
Aminas , Aminas/metabolismo , Aminas/química , Especificidade por Substrato , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/química , Biologia Computacional/métodos , Biocatálise , Biodiversidade , Modelos Moleculares
13.
Chembiochem ; 14(5): 633-8, 2013 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-23456955

RESUMO

Novel chatechol/hydroxamate siderophores (named "fimsbactins") were identified in Acinetobacter baumannii ATCC 17978 and Acinetobacter baylyi ADP1. The major compound, fimsbactin A, was isolated from low-iron cultures of A. baylyi ADP1, and its chemical structure was elucidated by mass spectrometry, and detailed (1)H, (13)C and (15)N NMR spectroscopy. From inverse feeding experiments following HPLC-MS analysis, the structures of five additional derivatives were elucidated. The gene cluster encoding the fimsbactin synthetase (fbs) was identified in both genomes, and mutants in fbs genes in A. baylyi were analyzed, thus allowing prediction of the fimsbactin biosynthesis pathway.


Assuntos
Acinetobacter baumannii/metabolismo , Acinetobacter/metabolismo , Catecóis/química , Ácidos Hidroxâmicos/química , Sideróforos/biossíntese , Acinetobacter/genética , Acinetobacter baumannii/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Conformação Molecular , Família Multigênica , Sideróforos/química
14.
ACS Chem Biol ; 18(3): 465-475, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36826427

RESUMO

Evidence suggests that ß-(2,6)-levan-type fructooligosaccharides (FOSs) possess higher prebiotic potential and selectivity than their ß-(2,1)-inulin-type counterparts. The focus of the present work was to develop an enzymatic approach for the synthesis of levan-type FOSs, employing levanases (EC 3.2.1.65), specifically those performing endo-hydrolysis on levans. To identify new levanases, a selection of candidates was obtained via in silico exploration of the levanase family biodiversity through a sequence-driven approach. A collection of 113 candidates was screened according to their specific activities on low- and high-molecular-weight (MW) levan as well as thermal stability. The most active levanases were able to hydrolyze both types of levan with similar efficiency. This ultimately revealed 10 active, highly evolutionary distant and diverse candidate levanases, which demonstrated preferential hydrolysis of levan over inulin. The end-product profile differed significantly depending on levanase with levanbiose, levantriose, and levantetraose being the major FOSs. Among them, the catalytic properties of 5 selected potential new levanases (LEV9 from Belliella Baltica, LEV36 from Dyadobacter fermentans, LEV37 from Capnocytophaga ochracea, LEV79 from Vibrio natriegens, LEV91 from Paenarthrobacter aurescens) were characterized, especially in terms of pH and temperature profiles, thermal stability, and kinetic parameters. The identification of these novel levanases is expected to contribute to the production of levan-type FOSs with properties surpassing those of commercial preparations.


Assuntos
Inulina , Oligossacarídeos , Glicosídeo Hidrolases/genética
15.
Int J Med Microbiol ; 302(3): 117-28, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22560766

RESUMO

While flagella-independent motility has long been described in representatives of the genus Acinetobacter, the mechanism of motility remains ambiguous. Acinetobacter baumannii, a nosocomial pathogen appearing increasingly multidrug-resistant, may profit from motility during infection or while persisting in the hospital environment. However, data on the frequency of motility skills among clinical A. baumannii isolates is scarce. We have screened a collection of 83 clinical A. baumannii isolates of different origin and found that, with the exception of one isolate, all were motile on wet surfaces albeit to varying degrees and exhibiting differing morphologies. Screening a collection of transposon mutants of strain ATCC 17978 for motility defects, we identified 2 akinetic mutants carrying transposon insertions in the dat and ddc gene, respectively. These neighbouring genes contribute to synthesis of 1,3-diaminopropane (DAP), a polyamine ubiquitously produced in Acinetobacter. Supplementing semi-solid media with DAP cured the motility defect of both mutants. HPLC analyses confirmed that DAP synthesis was abolished in ddc and dat mutants of different A. baumannii isolates and was re-established after genetic complementation. Both, the dat and ddc mutant of ATCC 17978 were attenuated in the Galleria mellonella caterpillar infection model. Taken together, surface-associated motility is a common trait of clinical A. baumannii isolates that requires DAP and may play a role in its virulence.


Assuntos
Acinetobacter baumannii/fisiologia , Diaminas/metabolismo , Locomoção , Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/genética , Acinetobacter baumannii/isolamento & purificação , Animais , Cromatografia Líquida de Alta Pressão , Elementos de DNA Transponíveis , Técnicas de Inativação de Genes , Teste de Complementação Genética , Humanos , Lepidópteros , Redes e Vias Metabólicas/genética , Mutagênese Insercional , Virulência , Fatores de Virulência/metabolismo
16.
ACS Catal ; 12(1): 66-72, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35036041

RESUMO

Baeyer-Villiger monooxygenases (BVMOs) catalyze the oxidation of ketones to lactones under very mild reaction conditions. This enzymatic route is hindered by the requirement of a stoichiometric supply of auxiliary substrates for cofactor recycling and difficulties with supplying the necessary oxygen. The recombinant production of BVMO in cyanobacteria allows the substitution of auxiliary organic cosubstrates with water as an electron donor and the utilization of oxygen generated by photosynthetic water splitting. Herein, we report the identification of a BVMO from Burkholderia xenovorans (BVMO Xeno ) that exhibits higher reaction rates in comparison to currently identified BVMOs. We report a 10-fold increase in specific activity in comparison to cyclohexanone monooxygenase (CHMO Acineto ) in Synechocystis sp. PCC 6803 (25 vs 2.3 U gDCW -1 at an optical density of OD750 = 10) and an initial rate of 3.7 ± 0.2 mM h-1. While the cells containing CHMO Acineto showed a considerable reduction of cyclohexanone to cyclohexanol, this unwanted side reaction was almost completely suppressed for BVMO Xeno , which was attributed to the much faster lactone formation and a 10-fold lower K M value of BVMO Xeno toward cyclohexanone. Furthermore, the whole-cell catalyst showed outstanding stereoselectivity. These results show that, despite the self-shading of the cells, high specific activities can be obtained at elevated cell densities and even further increased through manipulation of the photosynthetic electron transport chain (PETC). The obtained rates of up to 3.7 mM h-1 underline the usefulness of oxygenic cyanobacteria as a chassis for enzymatic oxidation reactions. The photosynthetic oxygen evolution can contribute to alleviating the highly problematic oxygen mass-transfer limitation of oxygen-dependent enzymatic processes.

17.
Arch Microbiol ; 193(10): 723-30, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21567174

RESUMO

Members of the genus Acinetobacter are well known for their metabolic versatility that allows them to adapt to different ecological niches. Here, we have addressed how the model strain Acinetobacter baylyi copes with different salinities and low water activities. A. baylyi tolerates up to 900 mM sodium salts and even higher concentrations of potassium chloride. Growth at high salinities was better in complex than in mineral medium and addition of glycine betaine stimulated growth at high salinities in mineral medium. Cells grown at high salinities took up glycine betaine from the medium. Uptake of glycine betaine was energy dependent and dependent on a salinity gradient across the membrane. Inspection of the genome sequence revealed two potential candidates for glycine betaine transport, both encoding potential secondary transporters, one of the major facilitator superfamily (MFS) class (ACIAD2280) and one of the betaine/choline/carnitine transporter (BCCT) family (ACIAD3460). The latter is essential for glycine betaine transport in A. baylyi. The broad distribution of ACIAD3460 homologues indicates the essential role of secondary transporters in the adaptation of Acinetobacter species to osmotic stress.


Assuntos
Acinetobacter/metabolismo , Proteínas de Bactérias/metabolismo , Betaína/metabolismo , Proteínas de Transporte/metabolismo , Salinidade , Acinetobacter/genética , Acinetobacter/crescimento & desenvolvimento , Adaptação Fisiológica , Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Proteínas da Membrana Plasmática de Transporte de GABA , Genoma Bacteriano , Cloreto de Potássio/metabolismo , Cloreto de Sódio/metabolismo
18.
Front Bioeng Biotechnol ; 9: 686362, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34277586

RESUMO

Despite the success of some nitrilases in industrial applications, there is a constant demand to broaden the catalog of these hydrolases, especially robust ones with high operational stability. By using the criteria of thermoresistance to screen a collection of candidate enzymes heterologously expressed in Escherichia coli, the enzyme Nit phym from the mesophilic organism Paraburkholderia phymatum was selected and further characterized. Its quick and efficient purification by heat treatment is of major interest for large-scale applications. The purified nitrilase displayed a high thermostability with 90% of remaining activity after 2 days at 30°C and a half-life of 18 h at 60°C, together with a broad pH range of 5.5-8.5. Its high resistance to various miscible cosolvents and tolerance to high substrate loadings enabled the quantitative conversion of 65.5 g⋅L-1 of 3-phenylpropionitrile into 3-phenylpropionic acid at 50°C in 8 h at low enzyme loadings of 0.5 g⋅L-1, with an isolated yield of 90%. This study highlights that thermophilic organisms are not the only source of industrially relevant thermostable enzymes and extends the scope of efficient nitrilases for the hydrolysis of a wide range of nitriles, especially trans-cinnamonitrile, terephthalonitrile, cyanopyridines, and 3-phenylpropionitrile.

19.
Biotechnol J ; 16(10): e2100010, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34270173

RESUMO

In recent years, many biocatalytic processes have been developed for the production of chemicals and pharmaceuticals. In this context, enzyme immobilization methods have attracted attention for their advantages, such as continuous production and increased stability. Here, enzyme immobilization methods and a collection of nitrilases from biodiversity for the conversion of 3-cyanopyridine to nicotinic acid were screened. Substrate conversion over 10 conversion cycles was monitored to optimize the process. The best immobilization conditions were found with cross-linking using glutaraldehyde to modify the PMMA beads. This method showed good activity over 10 cycles in a batch reactor at 30 and 40°C. Finally, production with a new thermostable nitrilase was examined in a continuous packed bed reactor, showing very high stability of the biocatalytic process at a flow rate of 0.12 ml min-1 and a temperature of 50°C. The complete conversion of 3-cyanopyridine was obtained over 30 days of operation. Future steps will concern reactor scale-up to increase the production rate with reasonable pressure drops.


Assuntos
Niacina , Aminoidrolases/metabolismo , Biocatálise , Enzimas Imobilizadas
20.
Nature ; 431(7011): 946-57, 2004 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-15496914

RESUMO

Tetraodon nigroviridis is a freshwater puffer fish with the smallest known vertebrate genome. Here, we report a draft genome sequence with long-range linkage and substantial anchoring to the 21 Tetraodon chromosomes. Genome analysis provides a greatly improved fish gene catalogue, including identifying key genes previously thought to be absent in fish. Comparison with other vertebrates and a urochordate indicates that fish proteins have diverged markedly faster than their mammalian homologues. Comparison with the human genome suggests approximately 900 previously unannotated human genes. Analysis of the Tetraodon and human genomes shows that whole-genome duplication occurred in the teleost fish lineage, subsequent to its divergence from mammals. The analysis also makes it possible to infer the basic structure of the ancestral bony vertebrate genome, which was composed of 12 chromosomes, and to reconstruct much of the evolutionary history of ancient and recent chromosome rearrangements leading to the modern human karyotype.


Assuntos
Cromossomos/genética , Peixes/genética , Duplicação Gênica , Genoma , Vertebrados/genética , Animais , Composição de Bases , Cromossomos Humanos/genética , Sequência Conservada/genética , Evolução Molecular , Genes/genética , Humanos , Cariotipagem , Mamíferos/genética , Modelos Genéticos , Dados de Sequência Molecular , Mapeamento Físico do Cromossomo , Proteoma , Análise de Sequência de DNA , Sintenia/genética , Urocordados/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA