RESUMO
Food business operators are responsible for food safety and assessment of shelf lives for their ready-to-eat products. For assisting them, a customized software based on predictive models, ListWare, is being developed. The aim of this study was to develop and validate a predictive model for the growth of Listeria monocytogenes in sliced roast beef. A challenge study was performed comprising 51 different combinations of variables. The growth curves followed the Baranyi and Roberts model with no clear lag phase and specific growth rates in the range <0.005-0.110 hr-1. A linear regression model was developed based on 528 observations and had an adjusted R-square of 0.80. The significant predictors were storage temperature, sodium lactate, interactions between sodium acetate and temperature, and MAP packaging and temperature. The model was validated in four laboratories in three countries. For conditions where the model predicted up to + log 2 cfu/g Listeria concentration, the observed concentrations were true or below the predicted concentration in 90% of the cases. For the remaining 10%, the roast beef was coated with spices and therefore different from the others. The model will be implemented in ListWare web-application for calculation of "Listeria shelf life".
Assuntos
Fast Foods/microbiologia , Contaminação de Alimentos/estatística & dados numéricos , Listeria monocytogenes/crescimento & desenvolvimento , Produtos da Carne/microbiologia , Animais , Bovinos , Contaminação de Alimentos/análise , Inocuidade dos Alimentos , Armazenamento de Alimentos , Cinética , Listeria monocytogenes/química , Listeria monocytogenes/genética , Listeria monocytogenes/isolamento & purificação , Produtos da Carne/análise , Modelos Biológicos , Análise de Regressão , TemperaturaRESUMO
The aim of this study was to model Listeria monocytogenes growth kinetics in ready to eat full meal pasta salads, containing fresh and cooked ingredients. With this aim, laboratory prepared salads, representing two formulations of commercial pasta salads, were spiked with L. monocytogenes and tested under categorised packaging and storage temperature conditions. L. monocytogenes enumeration results collected in 15 different laboratory prepared salad datasets were analysed with primary and secondary models. The models showing the best fit to describe L. monocytogenes growth kinetics in the laboratory prepared salads were then validated within commercial pasta salads. Baranyi no-lag was the best primary model fitting datasets collected at 12⯰C, whereas the exponential model gave the best results for datasets collected at 4⯰C. The maximum microbial specific growth rate (µmax) mean values obtained at 4 and 12⯰C for salads packaged under air packaging conditions were 0.008⯱â¯0.003 and 0.036⯱â¯0.006 log10 (cfu/g) h-1, respectively. At the same temperatures, the µmax mean values obtained under modified atmosphere were 0.005⯱â¯0.005 and 0.026⯱â¯0.005 log10 (cfu/g) h-1, respectively. The Gamma secondary model predicted the growth kinetics of L. monocytogenes at both temperatures and packaging conditions and the µmax at the optimum temperature and the optimum pH for Listeria growth (µopt) estimated by the model corresponded to 0.247⯱â¯0.009 log10 (cfu/g) h-1. Baranyi model without lag phase was used to generate growth kinetics under different scenarios. In the comparison of the predicted log10 concentrations respect to the observed ones the residues rarely exceeded 1 Log10â¯cfu/g. The selected models can be applied to describe the growth kinetics of L. monocytogenes in similar types of pasta salads with comparable pH, shelf life and storage conditions.
Assuntos
Temperatura Baixa , Embalagem de Alimentos , Armazenamento de Alimentos , Listeria monocytogenes/crescimento & desenvolvimento , Verduras/microbiologia , Queijo/microbiologia , Qualidade de Produtos para o Consumidor , Manipulação de Alimentos/métodos , Microbiologia de Alimentos , Conservação de Alimentos/métodos , Cinética , Produtos da Carne , Modelos TeóricosRESUMO
The objective of this research was to analyze the impact of different cooking procedures (i.e., gas hob and traditional static oven) and levels of cooking (i.e., rare, medium, and well-done) on inactivation of Listeria monocytogenes and Salmonella in pork loin chops. Moreover, the consumer's exposure to both microorganisms after simulation of meat leftover storage at home was assessed. The results showed that well-done cooking in a static oven was the only treatment able to inactivate the tested pathogens. The other cooking combinations allowed to reach in the product temperatures always ≥73.6 °C, decreasing both pathogens between 6 log10 cfu/g and 7 log10 cfu/g. However, according to simulation results, the few cells surviving cooking treatments can multiply during storage by consumers up to 1 log10 cfu/g, with probabilities of 0.059 (gas hob) and 0.035 (static oven) for L. monocytogenes and 0.049 (gas hob) and 0.031 (static oven) for Salmonella. The key factors affecting consumer exposure in relation to storage practices were probability of pathogen occurrence after cooking, doneness degree, time of storage, and time of storage at room temperature. The results of this study can be combined with prevalence data and dose-response models in risk assessment models and included in guidelines for consumers on practices to be followed to manage cooking of pork meat at home.
Assuntos
Culinária , Manipulação de Alimentos/métodos , Microbiologia de Alimentos , Listeria monocytogenes , Carne/microbiologia , Medição de Risco/métodos , Salmonella , Animais , Contagem de Colônia Microbiana , Simulação por Computador , Produtos da Carne/microbiologia , Probabilidade , Suínos , TemperaturaRESUMO
In this article, the performance objectives (POs) for Bacillus cereus group (BC) in celery, cheese, and spelt added as ingredients in a ready-to-eat mixed spelt salad, packaged under modified atmosphere, were calculated using a Bayesian approach. In order to derive the POs, BC detection and enumeration were performed in nine lots of naturally contaminated ingredients and final product. Moreover, the impact of specific production steps on the BC contamination was quantified. Finally, a sampling plan to verify the ingredient lots' compliance with each PO value at a 95% confidence level (CL) was defined. To calculate the POs, detection results as well as results above the limit of detection but below the limit of quantification (i.e., censored data) were analyzed. The most probable distribution of the censored data was determined and two-dimensional (2D) Monte Carlo simulations were performed. The PO values were calculated to meet a food safety objective of 4 log10 cfu of BC for g of spelt salad at the time of consumption. When BC grows during storage between 0.90 and 1.90 log10 cfu/g, the POs for BC in celery, cheese, and spelt ranged between 1.21 log10 cfu/g for celery and 2.45 log10 cfu/g for spelt. This article represents the first attempt to manage the concept of PO and 2D Monte Carlo simulation in the flow chart of a complex food matrix, including raw and cooked ingredients.
Assuntos
Bacillus cereus , Contagem de Colônia Microbiana , Manipulação de Alimentos/métodos , Gestão de Riscos/métodos , Verduras/microbiologia , Apium/microbiologia , Teorema de Bayes , Queijo/microbiologia , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Inocuidade dos Alimentos , Listeria monocytogenes , Modelos Estatísticos , Método de Monte Carlo , Temperatura , Triticum/microbiologiaRESUMO
Rabbit meat has outstanding dietetic and nutritional properties. However, few data on microbiological hazards associated with rabbit productions are available. In this study, the presence of Listeria monocytogenes was determined in 430 rabbit carcasses, 256 rabbit meat cuts and products, and 599 environmental sponges collected from four Italian rabbit slaughterhouses over a period of 1 year. Prevalence of L. monocytogenes among the 1285 rabbit meat and environmental samples was 11%, with statistically significant differences between slaughterhouses. The highest prevalence (33.6%) was observed in rabbit meat cuts and products; the majority of positive environmental samples were collected from conveyor belts. Overall, 27.9% and 14.3% of rabbit cuts and carcasses, respectively, had L. monocytogenes counts higher than 1 colony-forming unit (CFU)/10 g. A selection of 123 isolates from positive samples was genotyped and serotyped to determine genetic profiles and diversity among L. monocytogenes isolates contaminating different slaughterhouses and classes of products investigated. Discriminatory power and concordance among the results obtained using multilocus variable-number tandem-repeat analysis (MLVA), multilocus sequence typing (MLST), pulsed-field gel electrophoresis (PFGE), automated EcoRI ribotyping, and serotyping were assessed. The isolates selected for typing were classified into serotypes 1/2a (52.8%), 1/2c (32.5%), and 1/2b (14.6%). The majority of the isolates were classified as ST14 (34.1%), ST9 (35.5%), ST121 (17.9%), and ST224 (14.6%). The greatest discriminatory power was observed with the MLVA typing, followed by MLST, PFGE, and ribotyping. The best bidirectional concordance was achieved between PFGE and MLST. There was 100% correlation between both MLST and MLVA with serotype. Moreover, a high unidirectional correspondence was observed between MLVA and both MLST and PFGE, as well as between PFGE and both MLST and serotyping. The results of this study show for the first time in Italy prevalence and genetic profiles of L. monocytogenes isolated in rabbit products and slaughterhouses.
Assuntos
Matadouros , Listeria monocytogenes/isolamento & purificação , Produtos da Carne/microbiologia , Coelhos/microbiologia , Animais , Técnicas de Tipagem Bacteriana , Eletroforese em Gel de Campo Pulsado , Contaminação de Alimentos , Microbiologia de Alimentos , Itália , Listeria monocytogenes/classificação , Repetições Minissatélites , Tipagem de Sequências Multilocus , Ribotipagem , SorotipagemRESUMO
In this retrospective study, typing ability, discriminatory power, and concordance between typing results obtained on 123 Campylobacter jejuni turkey isolates, collected in 1998, within 14 different farms, applying multilocus sequence typing (MLST), pulsed-field gel electrophoresis (PFGE), antibiotic resistance profile, and virulence gene pattern, were assessed and compared. Overall, 33 sequence types, 28 pulsotypes, 10 resistotypes, and 5 pathotypes were identified. MLST and PFGE showed the better discriminatory ability (i.e., Simpson's diversity index >0.90) as well as unidirectional (i.e., Wallace and adjusted Wallace coefficients >0.86) and bidirectional (i.e., adjusted Rand coefficient >0.60) concordance. Moreover, both methods showed a good unidirectional and bidirectional concordance with the resistotype. On the contrary, the congruence of both genotyping methods and resistotype with the pathotype seemed due to chance alone. A clonal relationship was identified among 66.7% of the isolates. Furthermore, 59.7% of the investigated isolates were resistant to two or more antimicrobials and 92% to tetracycline. All the isolates harbored cadF and pldA genes, whereas a flaA gene product and a cdtB gene product were amplified from 85.4% and 79.7% of the isolates, respectively, using the primers designed by Bang et al. (2003). The results of this study clarify the level of genetic diversity among the C. jejuni originating from turkeys. MLST level of correlation with PFGE, resistotype, and pathotype is assessed. This result supports the selection of type and number of typing methods to use in epidemiological studies. Finally, the identification of clonal complexes (i.e., groups of profiles differing by no more than one gene from at least one other profile of the group using the entire Campylobacter MLST database) shared between turkey and human isolates suggests that turkeys could be a possible source of Campylobacter infection.
Assuntos
Antibacterianos/imunologia , Campylobacter jejuni/isolamento & purificação , Perus/microbiologia , Fatores de Virulência/genética , Agricultura , Animais , Proteínas da Membrana Bacteriana Externa/análise , Proteínas de Bactérias/análise , Técnicas de Tipagem Bacteriana , Campylobacter jejuni/classificação , Campylobacter jejuni/genética , Proteínas de Transporte/análise , Eletroforese em Gel de Campo Pulsado , Variação Genética , Técnicas de Genotipagem , Humanos , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Estudos RetrospectivosRESUMO
A quantitative comparison between discriminatory indexes and concordance among multilocus variable-number tandem-repeat analysis (MLVA), pulsed-field gel electrophoresis (PFGE), automated ribotyping, and phage typing has been performed, testing 238 Salmonella enterica serotype Enteritidis isolates not epidemiologically correlated. The results show that MLVA is the best choice, but each typing method provides a piece of information for establishing clonal relationships between the isolates.
Assuntos
Tipagem de Bacteriófagos/métodos , Técnicas de Genotipagem/métodos , Salmonella enteritidis/classificação , Animais , Eletroforese em Gel de Campo Pulsado , Humanos , Repetições Minissatélites , Ribotipagem , Salmonella enteritidis/isolamento & purificaçãoRESUMO
In the present study the relative sensitivity, specificity and accuracy of a Real-Time PCR assay for Salmonella detection in naturally contaminated pork cuts were evaluated in comparison with the ISO 6579:2004 reference culture method. Meat samples were collected from packaging up to the end of shelf life from 10 different lots over a year. The PCR method included an 18 h pre-enrichment step in buffered peptone water, a DNA extraction step, and a final 5' nuclease Real-Time PCR assay, including an Internal Amplification Control (IAC) and targeting the ttrRSBCA locus. Based on the analysis of 480 sub-units (three sub-units for each sample), the relative sensitivity, specificity and accuracy of the Real-Time PCR assay were 90, 78.7, and 82.9% respectively, corresponding to a Cohen's kappa value of 0.81 (very good agreement). These results suggest the PCR method as a rapid and accurate method for the quick check of meat lots before distribution. The ISO reference method might be applied only on positive Real-Time PCR samples for confirmatory and isolation purposes, mandatory in epidemiological investigations.
Assuntos
DNA Bacteriano/análise , Contaminação de Alimentos/análise , Carne/microbiologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Salmonella/isolamento & purificação , Animais , Qualidade de Produtos para o Consumidor , Microbiologia de Alimentos/métodos , Padrões de Referência , Sensibilidade e Especificidade , SuínosRESUMO
The growth and survival of Arcobacter butzleri and Arcobacter cryaerophilus in milk were investigated at different storage temperatures. Three strains of each Arcobacter species were inoculated into ultrahigh-temperature (UHT), pasteurized, and raw cow's milk and stored at 4, 10, and 20°C for 6 days. The survival of Arcobacter spp. during storage was evaluated by a culture method. Results clearly showed that A. butzleri and A. cryaerophilus remained viable in milk when stored at 4°C and 10°C for a period of 6 days. When UHT and pasteurized milk were stored at 20°C, the A. butzleri count increased, with a longer lag-phase in pasteurized milk, whereas the A. cryaerophilus count increased in the first 48 h and then rapidly decreased to below the detection limit on the sixth storage day. When raw milk was stored at 20°C, the A. butzleri and A. cryaerophilus counts decreased from the first day of storage and no viable bacteria were recovered on the last day of storage. Generally, A. butzleri displayed a significantly better growth and survival capacity than A. cryaerophilus in milk. The present study is the first to assess the survival and/or growth of A. butzleri and A. cryaerophilus in milk. The evidence suggests that in case of primary contamination of milk or secondary contamination due to postprocessing contamination, milk can act as a potential source of Arcobacter infection in humans and could have public health implications, especially for raw milk consumption.
Assuntos
Arcobacter/crescimento & desenvolvimento , Temperatura Alta , Leite/microbiologia , Pasteurização , Animais , Arcobacter/classificação , Contagem de Colônia Microbiana , Qualidade de Produtos para o Consumidor , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Concentração de Íons de HidrogênioRESUMO
Escherichia coli can harbor a broad repertoire of virulence and antimicrobial resistance (AMR) genes, which can be exchanged across the human gastrointestinal microflora, thus posing a public health risk. In this study, 6 batches of artisanal soft cheese and a 6-month ripened fermented dried sausage were investigated to assess the occurrence, phylogeny, and genomic traits (AMR, virulence, and mobilome) of E. coli. 30 and 3 strains isolated from salami and cheese food chains, respectively, were confirmed as E. coli by whole genome sequencing. The accumulation of single nucleotide polymorphism differences within small clusters of strains encompassing batches or processing stages, combined with high serotype and phylogroup diversity, suggested the occurrence of different contamination phenomena among the facilities. A total of 8 isolates harbored plasmid-mediated resistance genes, including one cheese strain that carried an IncQ1 plasmid carrying AMR determinants to macrolides [mph(B)], sulfonamides (sul1, sul2), trimethoprim (dfrA1), and aminoglycosides [aph(3")-Ib and aph(6)-Id]. A pool of virulence-associated genes in the class of adhesion, colonization, iron uptake, and toxins, putative ColV-positive iron uptake systems sit, iro, or iuc (8 salami and 2 cheese), plasmid-encoded hemolysin operon hlyABCD (one salami), and potential atypical enteropathogenic E. coli (3 salami environment) were reported. Overall, our findings underscore the importance of routine surveillance of E. coli in the artisanal food chain to prevent the dissemination of AMR and virulence.
RESUMO
Salmonella is a significant pathogen of human and animal health and poultry are one of the most common sources linked with foodborne illness worldwide. Global production of poultry meat and products has increased significantly over the last decade or more as a result of consumer demand and the changing demographics of the world's population, where poultry meat forms a greater part of the diet. In addition, the relatively fast growth rate of birds which is significantly higher than other meat species also plays a role in how poultry production has intensified. In an effort to meet the greater demand for poultry meat and products, modern poultry production and processing practices have changed and practices to target control and reduction of foodborne pathogens such as Salmonella have been implemented. These strategies are implemented along the continuum from parent and grandparent flocks to breeders, the farm and finished broilers to transport and processing and finally from retail to the consumer. This review focuses on common practices, interventions and strategies that have potential impact for the control of Salmonella along the poultry production continuum from farm to plate.
Assuntos
Doenças Transmitidas por Alimentos , Aves Domésticas , Animais , Humanos , Galinhas , Carne , Salmonella , Microbiologia de AlimentosRESUMO
In this pilot study, we compared the metagenomic profiles of different types of artisanal fermented meat products collected in Italy, Greece, Portugal, and Morocco to investigate their taxonomic profile, also in relation to the presence of foodborne pathogens and antimicrobial resistance genes. In addition, technical replicates of the same biological sample were tested to estimate the reproducibility of shotgun metagenomics. The taxonomic analysis showed a high level of variability between different fermented meat products at both the phylum and genus levels. Staphylococcus aureus was identified with the highest abundance in Italian fermented meat; Escherichia coli in fermented meat from Morocco; Salmonella enterica in fermented meat from Greece; Klebsiella pneumoniae and Yersinia enterocolitica in fermented meat from Portugal. The fungi Aspergillus, Neosartoria, Emericella, Penicillum and Debaryomyces showed a negative correlation with Lactococcus, Enterococcus, Streptococcus, Leuconostoc and Lactobacillus. The resistome analysis indicated that genes conferring resistance to aminoglycoside, macrolide, and tetracycline were widely spread in all samples. Our results showed that the reproducibility between technical replicates tested by shotgun metagenomic was very high under the same conditions of analysis (either DNA extraction, library preparation, sequencing analysis, and bioinformatic analysis), considering both the degree of overlapping and the pairwise correlation.
RESUMO
In the dairy industry, traditional heat treatments are known for their high water and energy consumption, and more economically and environmentally friendly solutions are being sought. Infrared (IR) technology offers advantages in energy efficiency and environmental sustainability; however, its effectiveness in milk processing, particularly in pathogen inactivation, remains relatively unexplored. In this study, homogenized raw milk was subjected to IR treatment, and its impact on Listeria monocytogenes, Salmonella spp., and Enterobacteriaceae was assessed. Results indicate that IR treatment effectively reduces the microbial load, achieving levels of inactivation comparable to conventional pasteurization methods (around 6 Log10 CFU/mL). Moreover, the treatment maintains milk pH levels, suggesting minimal alteration to its composition. Further research is needed to explore the full extent of IR treatment on milk sanitation efficacy, deeply exploring IR technology to fully assess its applicability and integration into dairy processing practices. Despite regulatory challenges, the Wir System Milk shows promise as a cost-effective and eco-friendly alternative for raw milk treatment.
RESUMO
This systematic review aimed to compile the available body of knowledge about microbiome-related nutritional interventions contributing to improve the chicken health and having an impact on the reduction of colonization by foodborne pathogens in the gut. Original research articles published between 2012 and 2022 were systematically searched in Scopus and PubMed. A total of 1,948 articles were retrieved and 140 fulfilled the inclusion criteria. Overall, 73 papers described 99 interventions against colonization by Escherichia coli and related organisms; 10 papers described 15 interventions against Campylobacter spp.; 36 papers described 54 interventions against Salmonella; 40 papers described 54 interventions against Clostridium perfringens. A total of 197 microbiome-related interventions were identified as effective against one or more of the listed pathogens and included probiotics (n = 80), prebiotics (n = 23), phytobiotics (n = 25), synbiotics (n = 12), organic acids (n = 12), enzymes (n = 4), essential oils (n = 14) and combination of these (n = 27). The identified interventions were mostly administered in the feed (173/197) or through oral gavage (11/197), in the drinking water (7/197), in ovo (2/197), intra amniotic (2/197), in fresh or reused litter (1/197) or both in the feed and water (1/197). The interventions enhanced the beneficial microbial communities in the broiler gut as Lactic acid bacteria, mostly Lactobacillus spp., or modulated multiple microbial populations. The mechanisms promoting the fighting against colonization by foodborne pathogens included competitive exclusion, production of short chain fatty acids, decrease of gut pH, restoration of the microbiome after dysbiosis events, promotion of a more stable microbial ecology, expression of genes improving the integrity of intestinal mucosa, enhancing of mucin production and improvement of host immune response. All the studies extracted from the literature described in vivo trials but performed on a limited number of animals under experimental settings. Moreover, they detailed the effect of the intervention on the chicken gut without details on further impact on poultry meat safety.
Assuntos
Galinhas , Microbioma Gastrointestinal , Doenças das Aves Domésticas , Animais , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/microbiologia , Carne/análise , Probióticos/administração & dosagem , Probióticos/farmacologia , Ração Animal/análise , Microbiologia de Alimentos , Doenças Transmitidas por Alimentos/veterinária , Doenças Transmitidas por Alimentos/prevenção & controle , Doenças Transmitidas por Alimentos/microbiologia , Dieta/veterináriaRESUMO
The commercialization of processed fish products is rising in restaurants and small to medium enterprises. However, there is a lack of data related to the microbiological safety of such products. In this study total aerobic colony count and Enterobacteriaceae, as proxy of process hygiene criteria, and detection of Listeria monocytogenes and concentration of histamine, as food safety criteria, were investigated in Salmo salar (salmon), Xiphias gladius (swordfish) and Thunnus albacares (yellowfin tuna), before, during, and at the end of a dry-curing process, performed in a dedicated cabinet, at controlled temperature, relative humidity and ventilation, up to 240 h. The microbiological parameters were investigated in the tested fish products by culture methods and shotgun metagenomic, while the presence of histamine, and other biogenic amines, was quantified by High Performance Liquid Chromatography. In the raw material, and up to the end of the dry curing process, the concentration of Enterobacteriaceae was always lower than 10 CFU/g, while total aerobic colony counts ranged between 3.9 and 5.4 Log CFU/g in salmon; 5.5 and 5.9 Log CFU/g in swordfish; 4.4 and 4.8 Log CFU/g in tuna. The pH values were significantly different between fish species, in the raw materials and during processing except for T4, occurring 70 h after the start of the process for salmon and after 114 h for swordfish and tuna. Water activity was different at specific sampling points and at the end of processing. Overall, 79 % of the sequences identified in the tested fish samples were assigned to y bacteria. The most abundant phyla were Pseudomonadota, Bacillota and Mycoplasmatota. The microbial populations identified by shotgun metagenomic in the tested fish species clustered well separated one from the other. Moreover, the microbial richness was significantly higher in salmon and tuna in comparison to swordfish. Listeria monocytogenes was not detected in the raw material by using the reference cultural method and very few reads (relative abundance <0.007) were detected in swordfish and tuna by shotgun metagenomic. Histamine producing bacteria, belonging to the genera Vibrio, Morganella, Photobacterium and Klebsiella, were identified primarily in swordfish. However, histamine and other biogenic amines were not detected in any sample. To the best of our knowledge this is the first paper reporting time point determinations of microbiological quality and safety parameters in salmon, swordfish and tuna, before, during and at the end of a dry-curing process. The data collected in this paper can help to predict the risk profile of ready to eat dry-cured fish products during storage before consumption.
Assuntos
Microbiologia de Alimentos , Histamina , Animais , Histamina/análise , Alimentos Marinhos/microbiologia , Aminas Biogênicas/análise , Enterobacteriaceae , Peixes , Bactérias/genética , Atum/microbiologia , Contagem de Colônia MicrobianaRESUMO
Dry-aged meat is gaining popularity among food business operators and private consumers. The process is carried out in aerobic conditions by hanging beef carcasses or placing subprimal or primal cuts in a dedicated cabinet for several weeks or even months while controlling the environment through the management of process parameters such as temperature, relative humidity, and airflow. In this review, we present a critical evaluation of the literature to evaluate tools to manage the process to guarantee food safety and identify critical control points, as well as good hygiene and manufacturing practices. In controlled aging conditions, only Listeria monocytogenes and Yersinia enterocolitica can multiply, while a reduction in the number of Salmonella spp. and Escherichia coli O157:H7 is generally reported. Enterobacteriaceae usually decrease on the surface of the meat during maturation; thus, for the purpose of the hygiene evaluation of the production process, a count no higher than that of unmatured meat is expected. Besides, various studies report that the total bacterial count and the spoilage microorganisms significantly increase on the surface of the meat, up to 5-6 Log10 CFU/g in the absence of visible spoilage. Bacteria of the Pseudomonas genus tend to progressively replace other microorganisms during maturation; thus, the total mesophilic or psychrophilic bacterial load is not a good indicator of process hygiene for matured meat. Critical parameters for the control of the process are temperature, relative humidity, and ventilation, which should be monitored during the process. For this reason, equipment designed and certified for dry-aging must be used, and the manufacturer must validate the process. Food business operators must apply general good manufacturing practices (GMP) and good hygiene practices (GHP) for meat processing and some GMP and GHP specific for dry-aging. Several research needs were identified, among them the evolution of the populations of L. monocytogenes and Y. enterocolitica and the microbiology of the inner parts of the dry-aged meat.
RESUMO
Poultry farms are hotspots for the development and spread of antibiotic resistance genes (ARGs), due to high stocking densities and extensive use of antibiotics, posing a threat of spread and contagion to workers and the external environment. Here, we applied shotgun metagenome sequencing to characterize the gut microbiome and resistome of poultry, workers and their households - also including microbiomes from the internal and external farm environment - in three different farms in Italy during a complete rearing cycle. Our results highlighted a relevant overlap among the microbiomes of poultry, workers, and their families (gut and skin), with clinically relevant ARGs and associated mobile elements shared in both poultry and human samples. On a finer scale, the reconstruction of species-level genome bins (SGBs) allowed us to delineate the dynamics of microorganism and ARGs dispersion from farm systems. We found the associations with worker microbiomes representing the main route of ARGs dispersion from poultry to human populations. Collectively, our findings clearly demonstrate the urgent need to implement more effective procedures to counteract ARGs dispersion from poultry food systems and the relevance of metagenomics-based metacommunity approaches to monitor the ARGs dispersion process for the safety of the working environment on farms.
Assuntos
Microbiota , Aves Domésticas , Animais , Humanos , Fazendas , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Genes BacterianosRESUMO
The European Commission requested an estimation of the BSE risk (C-, L- and H-BSE) from gelatine and collagen derived from ovine, caprine or bovine bones, and produced in accordance with Regulation (EC) No 853/2004, or Regulation (EC) No 1069/2009 and its implementing Regulation (EU) No 142/2011. A quantitative risk assessment was developed to estimate the BSE infectivity, measured in cattle oral infectious dose 50 (CoID50), in a small size batch of gelatine including one BSE-infected bovine or ovine animal at the clinical stage. The model was built on a scenario where all ruminant bones could be used for the production of gelatine and high-infectivity tissues remained attached to the skull (brain) and vertebral column (spinal cord). The risk and exposure pathways defined for humans and animals, respectively, were identified. Exposure routes other than oral via food and feed were considered and discussed but not assessed quantitatively. Other aspects were also considered as integrating evidence, like the epidemiological situation of the disease, the species barrier, the susceptibility of species to BSE and the assumption of an exponential dose-response relationship to determine the probability of BSE infection in ruminants. Exposure to infectivity in humans cannot be directly translated to risk of disease because the transmission barrier has not yet been quantified, although it is considered to be substantial, i.e. much greater amounts of infectivity would be needed to successfully infect a human and greater in the oral than in the parenteral route of exposure. The probability that no new case of BSE in the cattle or small ruminant population would be generated through oral exposure to gelatine made of ruminant bones is 99%-100% (almost certain) This conclusion is based on the current state of knowledge, the epidemiological situation of the disease and the current practices, and is also valid for collagen.
RESUMO
Two alternative methods for producing compost in a tunnel, from certain category (Cat.) 3 animal by-products (ABP) and other non-ABP material, were assessed. The first method proposed a minimum temperature of 55°C for 72 h and the second 60°C for 48 h, both with a maximum particle size of 200 mm. The assessment of the Panel on Biological Hazards (BIOHAZ) exclusively focused on Cat. 3 ABP materials (catering waste and processed foodstuffs of animal origin no longer intended for human consumption). The proposed composting processes were evaluated for their efficacy to achieve a reduction of at least 5 log10 of Enterococcus faecalis and Salmonella Senftenberg (775W, H2S negative) and at least 3 log10 of relevant thermoresistant viruses. The applicant provided a list of biological hazards that may enter the composting process and selected parvoviruses as the indicator of the thermoresistant viruses. The evidence provided by the applicant included: (a) literature data on thermal inactivation of biological hazards; (b) results from validation studies on the reduction of E. faecalis, Salmonella Senftenberg 775W H2S negative and canine parvovirus carried out in composting plants across Europe; (c) and experimental data from direct measurements of reduction of infectivity of murine parvovirus in compost material applying the time/temperature conditions of the two alternative methods. The evidence provided showed the capacity of the proposed alternative methods to reduce E. faecalis and Salmonella Senftenberg 775W H2S negative by at least 5 log10, and parvoviruses by at least 3 log10. The BIOHAZ Panel concluded that the two alternative methods under assessment can be considered to be equivalent to the processing method currently approved in the Commission Regulation (EU) No 142/2011.
RESUMO
Sewage metagenomics has risen to prominence in urban population surveillance of pathogens and antimicrobial resistance (AMR). Unknown species with similarity to known genomes cause database bias in reference-based metagenomics. To improve surveillance, we seek to recover sewage genomes and develop a quantification and correlation workflow for these genomes and AMR over time. We use longitudinal sewage sampling in seven treatment plants from five major European cities to explore the utility of catch-all sequencing of these population-level samples. Using metagenomic assembly methods, we recover 2332 metagenome-assembled genomes (MAGs) from prokaryotic species, 1334 of which were previously undescribed. These genomes account for ~69% of sequenced DNA and provide insight into sewage microbial dynamics. Rotterdam (Netherlands) and Copenhagen (Denmark) show strong seasonal microbial community shifts, while Bologna, Rome, (Italy) and Budapest (Hungary) have occasional blooms of Pseudomonas-dominated communities, accounting for up to ~95% of sample DNA. Seasonal shifts and blooms present challenges for effective sewage surveillance. We find that bacteria of known shared origin, like human gut microbiota, form communities, suggesting the potential for source-attributing novel species and their ARGs through network community analysis. This could significantly improve AMR tracking in urban environments.