Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Cerebellum ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625534

RESUMO

The perceptual and motor systems appear to have a set of movement primitives that exhibit certain geometric and kinematic invariances. Complex patterns and mental representations can be produced by (re)combining some simple motor elements in various ways using basic operations, transformations, and respecting a set of laws referred to as kinematic laws of motion. For example, point-to-point hand movements are characterized by straight hand paths with single-peaked-bell-shaped velocity profiles, whereas hand speed profiles for curved trajectories are often irregular and more variable, with speed valleys and inflections extrema occurring at the peak curvature. Curvature and speed are generically related by the 2/3 power law. Mathematically, such laws can be deduced from a combination of Euclidean, affine, and equi-affine geometries, whose neural correlates have been partially detected in various brain areas including the cerebellum and the basal ganglia. The cerebellum has been found to play an important role in the control of coordination, balance, posture, and timing over the past years. It is also assumed that the cerebellum computes forward internal models in relationship with specific cortical and subcortical brain regions but its motor relationship with the perceptual space is unclear. A renewed interest in the geometrical and spatial role of the cerebellum may enable a better understanding of its specific contribution to the action-perception loop and behavior's adaptation. In this sense, we complete this overview with an innovative theoretical framework that describes a possible implementation and selection by the cerebellum of geometries adhering to different mathematical laws.

2.
Sensors (Basel) ; 23(11)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37299885

RESUMO

Upper limb exoskeletons may confer significant mechanical advantages across a range of tasks. The potential consequences of the exoskeleton upon the user's sensorimotor capacities however, remain poorly understood. The purpose of this study was to examine how the physical coupling of the user's arm to an upper limb exoskeleton influenced the perception of handheld objects. In the experimental protocol, participants were required to estimate the length of a series of bars held in their dominant right hand, in the absence of visual feedback. Their performance in conditions with an exoskeleton fixed to the forearm and upper arm was compared to conditions without the upper limb exoskeleton. Experiment 1 was designed to verify the effects of attaching an exoskeleton to the upper limb, with object handling limited to rotations of the wrist only. Experiment 2 was designed to verify the effects of the structure, and its mass, with combined movements of the wrist, elbow, and shoulder. Statistical analysis indicated that movements performed with the exoskeleton did not significantly affect perception of the handheld object in experiment 1 (BF01 = 2.3) or experiment 2 (BF01 = 4.3). These findings suggest that while the integration of an exoskeleton complexifies the architecture of the upper limb effector, this does not necessarily impede transmission of the mechanical information required for human exteroception.


Assuntos
Exoesqueleto Energizado , Humanos , Fenômenos Biomecânicos , Extremidade Superior , Ombro , Braço
3.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36768220

RESUMO

Amyotrophic lateral sclerosis (ALS) is a complex disease characterized by the interplay of genetic and environmental factors for which, despite decades of intense research, diagnosis remains rather delayed, and most therapeutic options fail. Therefore, unravelling other potential pathogenetic mechanisms and searching for reliable markers are high priorities. In the present study, we employ the SOMAscan assay, an aptamer-based proteomic technology, to determine the circulating proteomic profile of ALS patients. The expression levels of ~1300 proteins were assessed in plasma, and 42 proteins with statistically significant differential expression between ALS patients and healthy controls were identified. Among these, four were upregulated proteins, Thymus- and activation-regulated chemokine, metalloproteinase inhibitor 3 and nidogen 1 and 2 were selected and validated by enzyme-linked immunosorbent assays in an overlapping cohort of patients. Following statistical analyses, different expression patterns of these proteins were observed in the familial and sporadic ALS patients. The proteins identified in this study might provide insight into ALS pathogenesis and represent potential candidates to develop novel targeted therapies.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Proteômica , Proteínas Sanguíneas
4.
Brain ; 144(12): 3710-3726, 2021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-34972208

RESUMO

Aggregation and cytoplasmic mislocalization of TDP-43 are pathological hallmarks of amyotrophic lateral sclerosis and frontotemporal dementia spectrum. However, the molecular mechanism by which TDP-43 aggregates form and cause neurodegeneration remains poorly understood. Cyclophilin A, also known as peptidyl-prolyl cis-trans isomerase A (PPIA), is a foldase and molecular chaperone. We previously found that PPIA interacts with TDP-43 and governs some of its functions, and its deficiency accelerates disease in a mouse model of amyotrophic lateral sclerosis. Here we characterized PPIA knock-out mice throughout their lifespan and found that they develop a neurodegenerative disease with key behavioural features of frontotemporal dementia, marked TDP-43 pathology and late-onset motor dysfunction. In the mouse brain, deficient PPIA induces mislocalization and aggregation of the GTP-binding nuclear protein Ran, a PPIA interactor and a master regulator of nucleocytoplasmic transport, also for TDP-43. Moreover, in absence of PPIA, TDP-43 autoregulation is perturbed and TDP-43 and proteins involved in synaptic function are downregulated, leading to impairment of synaptic plasticity. Finally, we found that PPIA was downregulated in several patients with amyotrophic lateral sclerosis and amyotrophic lateral sclerosis-frontotemporal dementia, and identified a PPIA loss-of-function mutation in a patient with sporadic amyotrophic lateral sclerosis . The mutant PPIA has low stability, altered structure and impaired interaction with TDP-43. These findings strongly implicate that defective PPIA function causes TDP-43 mislocalization and dysfunction and should be considered in future therapeutic approaches.


Assuntos
Esclerose Lateral Amiotrófica/genética , Ciclofilina A/genética , Demência Frontotemporal/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Ciclofilina A/deficiência , Proteínas de Ligação a DNA/metabolismo , Demência Frontotemporal/patologia , Humanos , Camundongos , Camundongos Knockout
5.
J Magn Reson Imaging ; 53(1): 223-233, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32896088

RESUMO

BACKGROUND: Gait impairment is poorly characterized in amyotrophic lateral sclerosis (ALS), despite increasing evidence of extrapyramidal and cerebellar dysfunction. Gait impairment adds to the considerable motor disability of ALS patients and requires targeted multidisciplinary interventions. PURPOSE: To assess gait imagery-specific networks and functional adaptation in ALS. STUDY TYPE: Prospective. POPULATION: Seventeen ALS patients with lower motor neuron predominant (LMNp) disability, 14 patients with upper motor neurons predominant (UMNp) disease, and 14 healthy controls were included. FIELD STRENGTH/SEQUENCES: 3T / gradient echo echo planar (GE-EPI). ASSESSMENT: Subjects performed a dual motor imagery task: normal and precision gait. The Movement Imagery Questionnaire - Revised Second Version (MIQ-rs) was used to appraise movement imagery in each participant. Study group-specific activation patterns were evaluated during motor imagery of gait. Additional generalized psychophysiological interaction analyses were carried out using the supplementary motor area, caudate, cerebellum, and superior parietal lobule as seed regions. STATISTICAL TESTS: Repeated-measures analysis of variance (ANOVA) was used to compare time imagery and MIQ-rs scores between groups. Size effects were also reported as partial eta squared (η2). One-way ANOVA was performed to explore differences in terms of connexions during motor imagery tasks. RESULTS: A significant increase in imagery time in UMNp patients compared to controls (P < 0.05) and LMNp (P < 0.05) during imagined gait was demonstrated. UMNp patients exhibited altered supplementary motor area, precentral gyrus, superior parietal lobule, and dorsolateral prefrontal cortex activation and increased orbitofrontal (pFDR(False Discovery Rate) < 0.05), posterior parietal (pFDR < 0.05) caudate (pFDR < 0.05), and cerebellar (pFDR < 0.05) signal during imagined locomotion. Increased effective connectivity of the striato-cerebellar and parieto-cerebellar circuits was also demonstrated. Additional activation was detected in the insula and cingulate cortex. DATA CONCLUSION: Enhanced striato- and parieto-cerebellar networks in UMNp ALS patients are likely to represent a compensatory response to impaired postural control. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 5.


Assuntos
Esclerose Lateral Amiotrófica , Pessoas com Deficiência , Transtornos Motores , Esclerose Lateral Amiotrófica/diagnóstico por imagem , Mapeamento Encefálico , Marcha , Humanos , Imageamento por Ressonância Magnética , Estudos Prospectivos
6.
Cogn Affect Behav Neurosci ; 20(4): 669-683, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32458391

RESUMO

In this study, we employed a visuo-motor imagery task of alertness as a mental training to examine temporal processing of motor responses within healthy young adults. Participants were divided into two groups (group 1; n = 20 who performed the mental training before the real physical task and a control group who performed the physical task without mental training). We vary the time interval between the imperative stimulus and the preceding one (fore-period) in which temporal preparation and arousal increase briefly. Our behavioural results provide clear evidence that mental training reinforces both temporal preparation and arousal, by shortening reaction time (RT), especially for the shortest fore-periods (FP) within exogenous "FP 250 ms" (p = 0.008) and endogenous alertness "FP 650 ms" (p = 0.001). We investigated how the brain controls such small temporal changes. We focus our neural hypothesis on three brain regions: anterior insula, dorsolateral prefrontal cortex, and anterior cingulate cortex and three putative circuits: one top-down (from dorsolateral prefrontal cortex to anterior cingulate cortex) and two bottom-up (from anterior insula to dorsolateral prefrontal cortex and anterior cingulate cortex). In fMRI, effective connectivity is strengthened during exogenous alertness between anterior insula and dorsolateral prefrontal cortex (p = 0.001), between anterior insula and cingulate cortex (p = 0.01), and during endogenous alertness between dorsolateral prefrontal cortex and anterior cingulate cortex (p = 0.05). We suggest that attentional reinforcement induced by an intensive and short session of mental training induces a temporal deployment of attention and allow optimizing the time pressure by maintaining a high state of arousal and ameliorating temporal preparation.


Assuntos
Atenção/fisiologia , Giro do Cíngulo/fisiologia , Imaginação/fisiologia , Prática Psicológica , Córtex Pré-Frontal/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Mapeamento Encefálico , Feminino , Giro do Cíngulo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Córtex Pré-Frontal/diagnóstico por imagem , Tempo de Reação/fisiologia , Reforço Psicológico , Fatores de Tempo , Adulto Jovem
7.
Cerebellum ; 18(2): 203-211, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30276521

RESUMO

In this study, we used fMRI to identify brain regions associated with concentration (sustained attention) during a motor preparation task. In comparison with a non-concentration task, increased activities were observed (P < 0.05, FWE-corrected P values) in cerebellar lobules VI and VII, motor cortex, pre-supplementary motor area (pre-SMA), thalamus, red nucleus (RN), and caudate nucleus (CN). Moreover, analysis of effective connectivity inter-areal (psychophysiological interactions) showed that during preparation, concentration-related brain activity increase was dependent on Cerebello-thalamo-pre-SMA-RN and Pre-SMA-CN-thalamo-M1 loops. We postulate that, while pre-SMA common to both loops is specifically involved in the movement preparation and readiness for voluntary movement through the striatum, the cerebellar lobule VI in conjunction with RN, likely through a cerebellar-rubro-olivary-cerebellar loop, might be implicated in concentration-related optimization of upcoming motor performances.


Assuntos
Cerebelo/fisiologia , Corpo Estriado/fisiologia , Atividade Motora/fisiologia , Córtex Motor/fisiologia , Núcleo Rubro/fisiologia , Adulto , Mapeamento Encefálico , Cerebelo/diagnóstico por imagem , Corpo Estriado/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Córtex Motor/diagnóstico por imagem , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia , Núcleo Rubro/diagnóstico por imagem , Tálamo/diagnóstico por imagem , Tálamo/fisiologia
9.
Cerebellum ; 16(2): 326-339, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27271710

RESUMO

The cerebellum is involved not only in motor coordination, training, and memory, but also in cognition and emotion. Lobule VI in particular belongs to sensorimotor, salience, and executive cerebellar networks. This study aims to determine whether lobule VI would constitute an integrative interface between motor and cognitive/emotional circuits during a motor task with verbal encouragement, likely in conjunction with the basal ganglia (reward and motivational system). We used fMRI to identify specific recruitment of cerebellar and striatal systems during physical performance using two motor tasks with and without encouragement. We found that: (i) Force results were higher during verbal encouragement than during basal condition in all participants. (ii) The anterior part of the right lobule VI was activated by motor execution in both tasks, while its posterior part was specifically activated by verbal encouragement. (iii) The closed-connectivity loop maintained motivation induced by verbal encouragement between cerebral and cerebellar through the red nucleus and striatal network. Therefore, right lobule VI is a hub-controlling sensorimotor and motivates aspects of motor performance in relation with the red nucleus and the ventral striatum. These results could have important implications for extrapyramidal and multisystem degenerative diseases.


Assuntos
Cerebelo/fisiologia , Córtex Cerebral/fisiologia , Motivação/fisiologia , Atividade Motora/fisiologia , Adulto , Mapeamento Encefálico , Cerebelo/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Retroalimentação Psicológica/fisiologia , Feminino , Mãos/fisiologia , Força da Mão , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia , Testes Neuropsicológicos , Inquéritos e Questionários
10.
Biochim Biophys Acta ; 1843(4): 725-34, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24440855

RESUMO

Accumulation of transactive response DNA binding protein (TDP-43) fragments in motor neurons is a post mortem hallmark of different neurodegenerative diseases. TDP-43 fragments are the products of the apoptotic caspases-3 and -7. Either excessive or insufficient cellular Ca(2+) availability is associated with activation of apoptotic caspases. However, as far as we know, it is not described whether activation of caspases, due to restricted intracellular Ca(2+), affects TDP-43 cleavage. Here we show that in various cell lineages with restricted Ca(2+) availability, TDP-43 is initially cleaved by caspases-3 and -7 and then, also by caspases-6 and -8 once activated by caspase-3. Furthermore, we disclose the existence of a TDP-43 caspase-mediated fragment of 15kDa, in addition to the well-known fragments of 35 and 25kDa. Interestingly, with respect to the other two fragments this novel fragment is the major product of caspase activity on murine TDP-43 whereas in human cell lines the opposite occurs. This outcome should be considered when murine models are used to investigate TDP-43 proteinopathies.


Assuntos
Apoptose/genética , Cálcio/metabolismo , Caspases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Animais , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica , Células HeLa , Humanos , Camundongos
11.
J Neurosci Methods ; 407: 110141, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38641265

RESUMO

BACKGROUND: Vigilance ability refers to the accuracy and speed with which a person performs a cognitive-motor task, either voluntarily (endogenous mode) or following a warning stimulus (exogenous mode). In the context of a force production task, our study focuses on the impact of the states of vigilance by proposing an original approach that allows distinguishing between good (inlier) and poor (outlier) participants. We assume that the use of an external signal and duration of the temporal preparation (foreperiod) increase the speed and the precision of motor responses. Our objective is particularly challenging in the context of a limited dataset with a high level of noise. NEW METHOD: Our original methodological approach consists of coupling the RANSAC (RANdom SAmple Consensus) algorithm with a statistical machine learning algorithm to handle noise. COMPARISON WITH EXISTING METHODS: Our clustering approach, based on the coupling of RANSAC methodology with ensemble classifiers, overcomes the limitations of conventional supervised algorithms that are either not robust to outliers (such as K-Nearest Neighbors) and/or not adapted to few-shot learning (such as Support Vector Machines and Artificial Neural Networks). RESULTS: The clustering results were validated in terms of reaction time distributions and force error distributions with respect to participant groups. We show that the use of an external signal and duration of the temporal preparation (foreperiod) increase the speed and the precision of motor responses. CONCLUSION: Our study has allowed us to detect atypical attentional patterns and succeeds in separating the inliers from the outliers.


Assuntos
Algoritmos , Atenção , Tempo de Reação , Humanos , Atenção/fisiologia , Adulto Jovem , Tempo de Reação/fisiologia , Adulto , Masculino , Feminino , Desempenho Psicomotor/fisiologia , Aprendizado de Máquina , Análise por Conglomerados
12.
Cogn Sci ; 47(12): e13391, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38043098

RESUMO

While temporal preparation has frequently been examined through the manipulation of foreperiods, the role of force level during temporal preparation remains underexplored. In our study, we propose to manipulate mental training of attentional control in order to shed light on the role of the force level and autonomic nervous system in the temporal preparation of an action. Forty subjects, divided into mental training group (n = 20) and without mental training group (n = 20), participated in this study. The influence of the attentional control and force levels on the autonomic nervous system were measured using the skin conductance response and the heart rate variability; the accuracy of the motor responses was measured using a method derived from machine learning. Behaviorally, only the mental training group reinforced its motor and attentional control. When using short foreperiod durations and high force level, motor and attentional control decreased, consistent with the dominant sympathetic system. This resulted in an increased anticipation rate of responses with a higher reaction time compared to the long foreperiods duration and low force level, in which the reaction time significantly decreased, with enhancement of the expected force level, showing consistency with the dominant parasympathetic system. Interestingly, results revealed a predictive relationship between the sympathovagal balance and motor and attentional control during the long foreperiods and low force level. Finally, results demonstrate that attentional mental training leads to the reinforcement of interactions between the autonomic nervous system and attentional processes which are involved in the temporal preparation of a force task.


Assuntos
Atenção , Sistema Nervoso Autônomo , Humanos , Sistema Nervoso Autônomo/fisiologia , Nível de Alerta/fisiologia , Tempo de Reação
13.
Front Neurosci ; 17: 1194859, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37332875

RESUMO

Objectives: Central fatigue is one of the most common symptoms in multiple sclerosis (MS). It has a profound impact on quality of life and a negative effect on cognition. Despite its widespread impact, fatigue is poorly understood and very difficult to measure. Whilst the basal ganglia has been implicated in fatigue the nature of its role and involvement with fatigue is still unclear. The aim of the present study was to establish the role of the basal ganglia in MS fatigue using functional connectivity measures. Methods: The present study examined the functional connectivity (FC) of the basal ganglia in a functional MRI study with 40 female participants with MS (mean age = 49.98 (SD = 9.65) years) and 40 female age-matched (mean age = 49.95 (SD = 9.59) years) healthy controls (HC). To measure fatigue the study employed the subjective self-report Fatigue Severity Scale and a performance measure of cognitive fatigue using an alertness-motor paradigm. To distinguish physical and central fatigue force measurements were also recorded. Results: The results suggest that decreased local FC within the basal ganglia plays a key role in cognitive fatigue in MS. Increased global FC between the basal ganglia and the cortex may sub serve a compensatory mechanism to reduce the impact of fatigue in MS. Conclusion: The current study is the first to show that basal ganglia functional connectivity is associated with both subjective and objective fatigue in MS. In addition, the local FC of the basal ganglia during fatigue inducing tasks could provide a neurophysiological biomarker of fatigue.

14.
J Clin Med ; 12(6)2023 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-36983366

RESUMO

(1) Background: Motor neuron diseases (MNDs) are fatal neurodegenerative diseases. Biomarkers could help with defining patients' prognoses and stratifications. Besides neurofilaments, chitinases are a promising family of possible biomarkers which correlate with neuroinflammatory status. We evaluated the plasmatic levels of CHI3L1 in MNDs, MND mimics, and healthy controls (HCs). (2) Methods: We used a sandwich ELISA to quantify the CHI3L1 in plasma samples from 44 MND patients, 7 hereditary spastic paraplegia (HSP) patients, 9 MND mimics, and 19 HCs. We also collected a ALSFRSr scale, MRC scale, spirometry, mutational status, progression rate (PR), blood sampling, and neuropsychological evaluation. (3) Results: The plasma levels of the CHI3L1 were different among groups (p = 0.005). Particularly, the MND mimics showed higher CHI3L1 levels compared with the MND patients and HCs. The CHI3L1 levels did not differ among PMA, PLS, and ALS, and we did not find a correlation among the CHI3L1 levels and clinical scores, spirometry parameters, PR, and neuropsychological features. Of note, the red blood cell count and haemoglobin was correlated with the CHI3L1 levels (respectively, p < 0.001, r = 0.63; p = 0.022, and r = 0.52). (4) Conclusions: The CHI3L1 plasma levels were increased in the MND mimics cohort compared with MNDs group. The increase of CHI3L1 in neuroinflammatory processes could explain our findings. We confirmed that the CHI3L1 plasma levels did not allow for differentiation between ALS and HCs, nor were they correlated with neuropsychological impairment.

15.
ACS Chem Neurosci ; 14(23): 4240-4251, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-37939393

RESUMO

Recent evidence supports an association between amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD). Indeed, prospective population-based studies demonstrated that about one-third of ALS patients develop parkinsonian (PK) signs, even though different neuronal circuitries are involved. In this context, proteomics represents a valuable tool to identify unique and shared pathological pathways. Here, we used two-dimensional electrophoresis to obtain the proteomic profile of peripheral blood mononuclear cells (PBMCs) from PD and ALS patients including a small cohort of ALS patients with parkinsonian signs (ALS-PK). After the removal of protein spots correlating with confounding factors, we applied a sparse partial least square discriminant analysis followed by recursive feature elimination to obtain two protein classifiers able to discriminate (i) PD and ALS patients (30 spots) and (ii) ALS-PK patients among all ALS subjects (20 spots). Functionally, the glycolysis pathway was significantly overrepresented in the first signature, while extracellular interactions and intracellular signaling were enriched in the second signature. These results represent molecular evidence at the periphery for the classification of ALS-PK as ALS patients that manifest parkinsonian signs, rather than comorbid patients suffering from both ALS and PD. Moreover, we confirmed that low levels of fibrinogen in PBMCs is a characteristic feature of PD, also when compared with another movement disorder. Collectively, we provide evidence that peripheral protein signatures are a tool to differentially investigate neurodegenerative diseases and highlight altered biochemical pathways.


Assuntos
Esclerose Lateral Amiotrófica , Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Estudos Prospectivos , Leucócitos Mononucleares/metabolismo , Proteômica
16.
J Magn Reson Imaging ; 36(3): 561-8, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22552939

RESUMO

PURPOSE: To investigate changes in diffusion tensor imaging (DTI) measures in limbic system white matter of patients with temporal lobe epilepsy (TLE) using diffusion tensor tractography. MATERIALS AND METHODS: DTI metrics including fractional anisotropy (FA), λ1, λ2, λ3, and trace (Tr) coefficients were obtained from tractography for bilateral fornix, superior and inferior cingulum fibers in 18 patients and 10 healthy controls. Hippocampal signal-to-noise ratio (SNR) quantitative analysis was performed in order to confirm the magnetic resonance imaging (MRI) hippocampal lesion presence or absence in TLE patients. RESULTS: Nine patients presented unilateral hippocampal sclerosis (TLE+HS) and nine patients had no signal abnormalities on conventional MRI (TLE-HS). On the ipsilateral seizure side, all three investigated tracts showed significant DTI indices abnormalities in both patient groups when compared with controls, most marked on the inferior cingulum. Contralateral to the seizure side, the three tracts presented significant DTI parameters in only the TLE+HS group when compared with controls. CONCLUSION: The DTI abnormalities found in the TLE-HS group may suggest that in the inferior cingulum the structural integrity is more affected than in the fornix or superior cingulum white matter bundles. The eigenvalues taken separately add complementary information to the FA and Tr metrics and may be useful indices in better understanding the architectural reorganization of limbic system tracts in TLE patients without HS.


Assuntos
Imagem de Tensor de Difusão/métodos , Epilepsia/patologia , Interpretação de Imagem Assistida por Computador/métodos , Sistema Límbico/patologia , Fibras Nervosas Mielinizadas/patologia , Lobo Temporal/patologia , Adulto , Feminino , Humanos , Vias Neurais/patologia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Adulto Jovem
17.
Neuroimage Clin ; 35: 103051, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35598461

RESUMO

BACKGROUND: The functional reorganization of brain networks sustaining gait is poorly characterized in amyotrophic lateral sclerosis (ALS) despite ample evidence of progressive disconnection between brain regions. The main objective of this fMRI study is to assess gait imagery-specific networks in ALS patients using dynamic causal modeling (DCM) complemented by parametric empirical Bayes (PEB) framework. METHOD: Seventeen lower motor neuron predominant (LMNp) ALS patients, fourteen upper motor neuron predominant (UMNp) ALS patients and fourteen healthy controls participated in this study. Each subject performed a dual motor imagery task: normal and precision gait. The Movement Imagery Questionnaire (MIQ-rs) and imagery time (IT) were used to evaluate gait imagery in each participant. In a neurobiological computational model, the circuits involved in imagined gait and postural control were investigated by modelling the relationship between normal/precision gait and connection strengths. RESULTS: Behavioral results showed significant increase in IT in UMNp patients compared to healthy controls (Pcorrected < 0.05) and LMNp (Pcorrected < 0.05). During precision gait, healthy controls activate the model's circuits involved in the imagined gait and postural control. In UMNp, decreased connectivity (inhibition) from basal ganglia (BG) to supplementary motor area (SMA) and from SMA to posterior parietal cortex (PPC) is observed. Contrary to healthy controls, DCM detects no cerebellar-PPC connectivity in neither UMNp nor LMNp ALS. During precision gait, bilateral connectivity (excitability) between SMA and BG is observed in the LMNp group contrary to UMNp and healthy controls. CONCLUSIONS: Our findings demonstrate the utility of implementing both DCM and PEB to characterize connectivity patterns in specific patient phenotypes. Our approach enables the identification of specific circuits involved in postural deficits, and our findings suggest a putative excitatory-inhibitory imbalance. More broadly, our data demonstrate how clinical manifestations are underpinned by network-specific disconnection phenomena in ALS.


Assuntos
Esclerose Lateral Amiotrófica , Córtex Motor , Esclerose Lateral Amiotrófica/diagnóstico por imagem , Teorema de Bayes , Humanos , Imageamento por Ressonância Magnética/métodos , Equilíbrio Postural
18.
Sci Rep ; 12(1): 2430, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35165398

RESUMO

To assess the usefulness of a theoretical postural instability discrimination index (PIth) in amyotrophic lateral sclerosis (ALS). Prospective regression analyzes were performed to identify the biomechanical determinants of postural instability unrelated to lower limb motor deficits from gait initiation factors. PIth was constructed using a logit function of biomechanical determinants. Discriminatory performance and performance differences were tested. Backward displacement of the pression center (APAamplitude) and active vertical braking of the mass center (Braking-index) were the biomechanical determinants of postural instability. PIth = - 0.13 × APAamplitude - 0.12 × Braking-index + 5.67, (P < 0.0001, RSquare = 0.6119). OR (APAamplitude) and OR (Braking-index) were 0.878 and 0.887, respectively, i.e., for a decrease of 10 mm in APAamplitude or 10% in Braking-index, the postural instability risk was 11.391 or 11.274 times higher, respectively. PIth had the highest discriminatory performance (AUC 0.953) with a decision threshold value [Formula: see text] 0.587, a sensitivity of 90.91%, and a specificity of 83.87%, significantly increasing the sensitivity by 11.11%. PIth, as objective clinical integrator of gait initiation biomechanical processes significantly involved in dynamic postural control, was a reliable and performing discrimination index of postural instability with a significant increased sensitivity, and may be useful for a personalized approach to postural instability in ALS.


Assuntos
Esclerose Lateral Amiotrófica/fisiopatologia , Marcha , Extremidade Inferior/fisiopatologia , Equilíbrio Postural , Idoso , Área Sob a Curva , Fenômenos Biomecânicos , Estudos de Casos e Controles , Análise por Conglomerados , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Curva ROC
19.
Sci Rep ; 12(1): 395, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013445

RESUMO

The aetiology of Amyotrophic Lateral Sclerosis (ALS) is still poorly understood. The discovery of genetic forms of ALS pointed out the mechanisms underlying this pathology, but also showed how complex these mechanisms are. Excitotoxicity is strongly suspected to play a role in ALS pathogenesis. Excitotoxicity is defined as neuron damage due to excessive intake of calcium ions (Ca2+) by the cell. This study aims to find a relationship between the proteins coded by the most relevant genes associated with ALS and intracellular Ca2+ accumulation. In detail, the profile of eight proteins (TDP-43, C9orf72, p62/sequestosome-1, matrin-3, VCP, FUS, SOD1 and profilin-1), was analysed in three different cell types induced to raise their cytoplasmic amount of Ca2+. Intracellular Ca2+ accumulation causes a decrease in the levels of TDP-43, C9orf72, matrin3, VCP, FUS, SOD1 and profilin-1 and an increase in those of p62/sequestosome-1. These events are associated with the proteolytic action of two proteases, calpains and caspases, as well as with the activation of autophagy. Interestingly, Ca2+ appears to both favour and hinder autophagy. Understanding how and why calpain-mediated proteolysis and autophagy, which are physiological processes, become pathological may elucidate the mechanisms responsible for ALS and help discover new therapeutic targets.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Autofagia , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Calpaína/metabolismo , Caspases/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Células HeLa , Humanos , Proteínas do Tecido Nervoso/genética , Neurônios/patologia , Proteínas Associadas à Matriz Nuclear/genética , Proteínas Associadas à Matriz Nuclear/metabolismo , Profilinas/genética , Profilinas/metabolismo , Proteólise , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Fatores de Tempo , Transcriptoma , Proteína com Valosina/genética , Proteína com Valosina/metabolismo
20.
Artigo em Inglês | MEDLINE | ID: mdl-33879000

RESUMO

Objective: To investigate the impact of a novel heterozygous FUS mutation in the acceptor splice site of intron 14 (c.1542 - 1 g > t) on protein expression in Peripheral Blood Mononuclear Cells (PBMC) from a familial ALS patient. Methods: PBMC were isolated for mRNA analysis (cDNA synthesis, sequencing and one-step RT-PCR), Western Immunoblot (WI), and Immunofluorescence (IF). Results: cDNA analysis revealed the skipping of exon 15 and a premature stop codon at c.228. RT-PCR showed reduced FUS mRNA by more than half compared to a healthy control (HC) and an ALS patient without genetic mutations (wtALS). In WI FUS band intensity in the proband was 30-50% compared to HC and wtALS. An antibody expected to detect only the wild-type protein did not reveal any reduction of FUS band intensity compared to the other antibodies. IF showed no difference among HC, wtALS, and the proband. Discussion: The reduction of FUS mRNA and protein in PBMC suggests the absence of the truncated protein, probably due to nonsense-mediated decay, leading to loss of function.


Assuntos
Esclerose Lateral Amiotrófica , Leucócitos Mononucleares , Adulto , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Éxons , Humanos , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Mutação/genética , Proteína FUS de Ligação a RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA