Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Trends Biochem Sci ; 45(1): 42-57, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31679841

RESUMO

Bacterial RNA degradosomes are multienzyme molecular machines that act as hubs for post-transcriptional regulation of gene expression. The ribonuclease activities of these complexes require tight regulation, as they are usually essential for cell survival while potentially destructive. Recent studies have unveiled a wide variety of regulatory mechanisms including autoregulation, post-translational modifications, and protein compartmentalization. Recently, the subcellular organization of bacterial RNA degradosomes was found to present similarities with eukaryotic messenger ribonucleoprotein (mRNP) granules, membraneless compartments that are also involved in mRNA and protein storage and/or mRNA degradation. In this review, we present the current knowledge on the composition and targets of RNA degradosomes, the most recent developments regarding the regulation of these machineries, and their similarities with the eukaryotic mRNP granules.


Assuntos
Endorribonucleases/metabolismo , Complexos Multienzimáticos/metabolismo , Polirribonucleotídeo Nucleotidiltransferase/metabolismo , RNA Helicases/metabolismo , RNA Bacteriano/metabolismo , Endorribonucleases/genética , Complexos Multienzimáticos/genética , Polirribonucleotídeo Nucleotidiltransferase/genética , RNA Helicases/genética
2.
PLoS Pathog ; 17(1): e1009193, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33444370

RESUMO

Cellular metal homeostasis is a critical process for all organisms, requiring tight regulation. In the major pathogen Helicobacter pylori, the acquisition of nickel is an essential virulence determinant as this metal is a cofactor for the acid-resistance enzyme, urease. Nickel uptake relies on the NixA permease and the NiuBDE ABC transporter. Till now, bacterial metal transporters were reported to be controlled at their transcriptional level. Here we uncovered post-translational regulation of the essential Niu transporter in H. pylori. Indeed, we demonstrate that SlyD, a protein combining peptidyl-prolyl isomerase (PPIase), chaperone, and metal-binding properties, is required for the activity of the Niu transporter. Using two-hybrid assays, we found that SlyD directly interacts with the NiuD permease subunit and identified a motif critical for this contact. Mutants of the different SlyD functional domains were constructed and used to perform in vitro PPIase activity assays and four different in vivo tests measuring nickel intracellular accumulation or transport in H. pylori. In vitro, SlyD PPIase activity is down-regulated by nickel, independently of its C-terminal region reported to bind metals. In vivo, a role of SlyD PPIase function was only revealed upon exposure to high nickel concentrations. Most importantly, the IF chaperone domain of SlyD was shown to be mandatory for Niu activation under all in vivo conditions. These data suggest that SlyD is required for the active functional conformation of the Niu permease and regulates its activity through a novel mechanism implying direct protein interaction, thereby acting as a gatekeeper of nickel uptake. Finally, in agreement with a central role of SlyD, this protein is essential for the colonization of the mouse model by H. pylori.


Assuntos
Proteínas de Bactérias/metabolismo , Infecções por Helicobacter/metabolismo , Helicobacter pylori/metabolismo , Metalochaperonas/metabolismo , Níquel/metabolismo , Peptidilprolil Isomerase/metabolismo , Animais , Infecções por Helicobacter/microbiologia , Camundongos , Urease/metabolismo
3.
Nucleic Acids Res ; 49(9): 5249-5264, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33893809

RESUMO

Ribonucleases are central players in post-transcriptional regulation, a major level of gene expression regulation in all cells. Here, we characterized the 3'-5' exoribonuclease RNase R from the bacterial pathogen Helicobacter pylori. The 'prototypical' Escherichia coli RNase R displays both exoribonuclease and helicase activities, but whether this latter RNA unwinding function is a general feature of bacterial RNase R had not been addressed. We observed that H. pylori HpRNase R protein does not carry the domains responsible for helicase activity and accordingly the purified protein is unable to degrade in vitro RNA molecules with secondary structures. The lack of RNase R helicase domains is widespread among the Campylobacterota, which include Helicobacter and Campylobacter genera, and this loss occurred gradually during their evolution. An in vivo interaction between HpRNase R and RhpA, the sole DEAD-box RNA helicase of H. pylori was discovered. Purified RhpA facilitates the degradation of double stranded RNA by HpRNase R, showing that this complex is functional. HpRNase R has a minor role in 5S rRNA maturation and few targets in H. pylori, all included in the RhpA regulon. We concluded that during evolution, HpRNase R has co-opted the RhpA helicase to compensate for its lack of helicase activity.


Assuntos
RNA Helicases DEAD-box/metabolismo , Exorribonucleases/metabolismo , Helicobacter pylori/enzimologia , Motivos de Aminoácidos , Epsilonproteobacteria/enzimologia , Exorribonucleases/química , RNA de Cadeia Dupla/metabolismo , RNA Ribossômico 5S/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(49): 31398-31409, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33229580

RESUMO

Toxin-antitoxin systems are found in many bacterial chromosomes and plasmids with roles ranging from plasmid stabilization to biofilm formation and persistence. In these systems, the expression/activity of the toxin is counteracted by an antitoxin, which, in type I systems, is an antisense RNA. While the regulatory mechanisms of these systems are mostly well defined, the toxins' biological activity and expression conditions are less understood. Here, these questions were investigated for a type I toxin-antitoxin system (AapA1-IsoA1) expressed from the chromosome of the human pathogen Helicobacter pylori We show that expression of the AapA1 toxin in H. pylori causes growth arrest associated with rapid morphological transformation from spiral-shaped bacteria to round coccoid cells. Coccoids are observed in patients and during in vitro growth as a response to different stress conditions. The AapA1 toxin, first molecular effector of coccoids to be identified, targets H. pylori inner membrane without disrupting it, as visualized by cryoelectron microscopy. The peptidoglycan composition of coccoids is modified with respect to spiral bacteria. No major changes in membrane potential or adenosine 5'-triphosphate (ATP) concentration result from AapA1 expression, suggesting coccoid viability. Single-cell live microscopy tracking the shape conversion suggests a possible association of this process with cell elongation/division interference. Oxidative stress induces coccoid formation and is associated with repression of the antitoxin promoter and enhanced processing of its transcript, leading to an imbalance in favor of AapA1 toxin expression. Our data support the hypothesis of viable coccoids with characteristics of dormant bacteria that might be important in H. pylori infections refractory to treatment.


Assuntos
Helicobacter pylori/citologia , Helicobacter pylori/efeitos dos fármacos , Peptídeos/farmacologia , Sistemas Toxina-Antitoxina , Trifosfato de Adenosina/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Helicobacter pylori/ultraestrutura , Peróxido de Hidrogênio/toxicidade , Espaço Intracelular/metabolismo , Cinética , Potenciais da Membrana/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Peptidoglicano/metabolismo
5.
Gut ; 69(9): 1582-1591, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31822580

RESUMO

OBJECTIVE: Helicobacter pylori (Hp) is a major risk factor for gastric cancer (GC). Hp promotes DNA damage and proteasomal degradation of p53, the guardian of genome stability. Hp reduces the expression of the transcription factor USF1 shown to stabilise p53 in response to genotoxic stress. We investigated whether Hp-mediated USF1 deregulation impacts p53-response and consequently genetic instability. We also explored in vivo the role of USF1 in gastric carcinogenesis. DESIGN: Human gastric epithelial cell lines were infected with Hp7.13, exposed or not to a DNA-damaging agent camptothecin (CPT), to mimic a genetic instability context. We quantified the expression of USF1, p53 and their target genes, we determined their subcellular localisation by immunofluorescence and examined USF1/p53 interaction. Usf1-/- and INS-GAS mice were used to strengthen the findings in vivo and patient data examined for clinical relevance. RESULTS: In vivo we revealed the dominant role of USF1 in protecting gastric cells against Hp-induced carcinogenesis and its impact on p53 levels. In vitro, Hp delocalises USF1 into foci close to cell membranes. Hp prevents USF1/p53 nuclear built up and relocates these complexes in the cytoplasm, thereby impairing their transcriptional function. Hp also inhibits CPT-induced USF1/p53 nuclear complexes, exacerbating CPT-dependent DNA damaging effects. CONCLUSION: Our data reveal that the depletion of USF1 and its de-localisation in the vicinity of cell membranes are essential events associated to the genotoxic activity of Hp infection, thus promoting gastric carcinogenesis. These findings are also of clinical relevance, supporting USF1 expression as a potential marker of GC susceptibility.


Assuntos
Carcinogênese , Mucosa Gástrica , Infecções por Helicobacter/metabolismo , Helicobacter pylori , Neoplasias Gástricas , Proteína Supressora de Tumor p53/genética , Fatores Estimuladores Upstream/metabolismo , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Linhagem Celular , Dano ao DNA , Mucosa Gástrica/metabolismo , Mucosa Gástrica/microbiologia , Mucosa Gástrica/patologia , Instabilidade Genômica , Helicobacter pylori/metabolismo , Helicobacter pylori/patogenicidade , Humanos , Camundongos , Complexo de Endopeptidases do Proteassoma/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/microbiologia , Ubiquitinação
6.
Helicobacter ; 25 Suppl 1: e12736, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32918351

RESUMO

The original strategies developed by Helicobacter pylori to persistently colonise its host and to deregulate its cellular functions make this bacterium an outstanding model to study host-pathogen interaction and the mechanisms responsible for bacterial-induced carcinogenesis. During the last year, significant results were obtained on the role of bacterial factors essential for gastric colonisation such as spiral shape maintenance, orientation through chemotaxis and the formation of bacteria clonal population islands inside the gastric glands. Particularities of the H pylori cell surface, a structure important for immune escape, were demonstrated. New insights in the bacterial stress response revealed the importance of DNA methylation-mediated regulation. Further findings were reported on H pylori components that mediate natural transformation and mechanisms of bacterial DNA horizontal transfer which maintain a high level of H pylori genetic variability. Within-host evolution was found to be niche-specific and probably associated with physiological differences between the antral and oxyntic gastric mucosa. In addition, with the progress of CryoEM, high-resolution structures of the major virulence factors, VacA and CagT4SS, were obtained. The use of gastric organoid models fostered research revealing, preferential accumulation of bacteria at the site of injury during infection. Several studies further characterised the role of CagA in the oncogenic properties of H pylori, identifying the activation of novel CagA-dependent pathways, leading to the promotion of genetic instabilities, epithelial-to-mesenchymal transition and finally carcinogenesis. Recent studies also highlight that microRNA-mediated regulation and epigenetic modifications, through DNA methylation, are key events in the H pylori-induced tumorigenesis process.


Assuntos
Infecções por Helicobacter/patologia , Interações Hospedeiro-Patógeno , Fatores de Virulência/metabolismo , Antígenos de Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Mucosa Gástrica/microbiologia , Regulação Bacteriana da Expressão Gênica , Helicobacter pylori , Humanos
7.
PLoS Pathog ; 12(12): e1006018, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27923069

RESUMO

Metal acquisition is crucial for all cells and for the virulence of many bacterial pathogens. In particular, nickel is a virulence determinant for the human gastric pathogen Helicobacter pylori as it is the cofactor of two enzymes essential for in vivo colonization, urease and a [NiFe] hydrogenase. To import nickel despite its scarcity in the human body, H. pylori requires efficient uptake mechanisms that are only partially defined. Indeed, alternative ways of nickel entry were predicted to exist in addition to the well-described NixA permease. Using a genetic screen, we identified an ABC transporter, that we designated NiuBDE, as a novel H. pylori nickel transport system. Unmarked mutants carrying deletions of nixA, niuD and/or niuB, were constructed and used to measure (i) tolerance to toxic nickel exposure, (ii) intracellular nickel content by ICP-OES, (iii) transport of radioactive nickel and (iv) expression of a reporter gene controlled by nickel concentration. We demonstrated that NiuBDE and NixA function separately and are the sole nickel transporters in H. pylori. NiuBDE, but not NixA, also transports cobalt and bismuth, a metal currently used in H. pylori eradication therapy. Both NiuBDE and NixA participate in nickel-dependent urease activation at pH 5 and survival under acidic conditions mimicking those encountered in the stomach. However, only NiuBDE is able to carry out this activity at neutral pH and is essential for colonization of the mouse stomach. Phylogenomic analyses indicated that both nixA and niuBDE genes have been acquired via horizontal gene transfer by the last common ancestor of the gastric Helicobacter species. Our work highlights the importance of this evolutionary event for the emergence of Helicobacter gastric species that are adapted to the hostile environment of the stomach where the capacity of Helicobacter to import nickel and thereby activate urease needs to be optimized.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/metabolismo , Helicobacter pylori/metabolismo , Níquel/metabolismo , Virulência/fisiologia , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Proteínas de Bactérias/genética , Evolução Biológica , Transporte Biológico/fisiologia , Modelos Animais de Doenças , Infecções por Helicobacter/metabolismo , Helicobacter pylori/genética , Helicobacter pylori/patogenicidade , Camundongos , Filogenia
8.
PLoS Pathog ; 11(12): e1005312, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26641249

RESUMO

Metal acquisition and intracellular trafficking are crucial for all cells and metal ions have been recognized as virulence determinants in bacterial pathogens. Virulence of the human gastric pathogen Helicobacter pylori is dependent on nickel, cofactor of two enzymes essential for in vivo colonization, urease and [NiFe] hydrogenase. We found that two small paralogous nickel-binding proteins with high content in Histidine (Hpn and Hpn-2) play a central role in maintaining non-toxic intracellular nickel content and in controlling its intracellular trafficking. Measurements of metal resistance, intracellular nickel contents, urease activities and interactomic analysis were performed. We observed that Hpn acts as a nickel-sequestration protein, while Hpn-2 is not. In vivo, Hpn and Hpn-2 form homo-multimers, interact with each other, Hpn interacts with the UreA urease subunit while Hpn and Hpn-2 interact with the HypAB hydrogenase maturation proteins. In addition, Hpn-2 is directly or indirectly restricting urease activity while Hpn is required for full urease activation. Based on these data, we present a model where Hpn and Hpn-2 participate in a common pathway of controlled nickel transfer to urease. Using bioinformatics and top-down proteomics to identify the predicted proteins, we established that Hpn-2 is only expressed by H. pylori and its closely related species Helicobacter acinonychis. Hpn was detected in every gastric Helicobacter species tested and is absent from the enterohepatic Helicobacter species. Our phylogenomic analysis revealed that Hpn acquisition was concomitant with the specialization of Helicobacter to colonization of the gastric environment and the duplication at the origin of hpn-2 occurred in the common ancestor of H. pylori and H. acinonychis. Finally, Hpn and Hpn-2 were found to be required for colonization of the mouse model by H. pylori. Our data show that during evolution of the Helicobacter genus, acquisition of Hpn and Hpn-2 by gastric Helicobacter species constituted a decisive evolutionary event to allow Helicobacter to colonize the hostile gastric environment, in which no other bacteria persistently thrives. This acquisition was key for the emergence of one of the most successful bacterial pathogens, H. pylori.


Assuntos
Proteínas de Bactérias/metabolismo , Evolução Biológica , Infecções por Helicobacter/metabolismo , Helicobacter pylori/genética , Helicobacter pylori/patogenicidade , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/genética , Cromatografia Líquida , Modelos Animais de Doenças , Helicobacter/genética , Helicobacter/metabolismo , Helicobacter/patogenicidade , Helicobacter pylori/metabolismo , Immunoblotting , Camundongos , Dados de Sequência Molecular , Níquel/metabolismo , Filogenia , Proteínas/metabolismo , Proteômica , Espectrometria de Massas em Tandem , Urease/metabolismo
9.
RNA Biol ; 13(2): 243-53, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26726773

RESUMO

Degradation of RNA as an intermediate message between genes and corresponding proteins is important for rapid attenuation of gene expression and maintenance of cellular homeostasis. This process is controlled by ribonucleases that have different target specificities. In the bacterial pathogen Helicobacter pylori, an exo- and endoribonuclease RNase J is essential for growth. To explore the role of RNase J in H. pylori, we identified its putative targets at a global scale using next generation RNA sequencing. We found that strong depletion for RNase J led to a massive increase in the steady-state levels of non-rRNAs. mRNAs and RNAs antisense to open reading frames were most affected with over 80% increased more than 2-fold. Non-coding RNAs expressed in the intergenic regions were much less affected by RNase J depletion. Northern blotting of selected messenger and non-coding RNAs validated these results. Globally, our data suggest that RNase J of H. pylori is a major RNase involved in degradation of most cellular RNAs.


Assuntos
Helicobacter pylori/enzimologia , RNA Mensageiro/genética , Ribonucleases/genética , Regulação da Expressão Gênica , Helicobacter pylori/genética , Sequenciamento de Nucleotídeos em Larga Escala , Estabilidade de RNA/genética , RNA Ribossômico/genética
10.
Nucleic Acids Res ; 41(1): 288-301, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-23093592

RESUMO

Protein complexes directing messenger RNA (mRNA) degradation are present in all kingdoms of life. In Escherichia coli, mRNA degradation is performed by an RNA degradosome organized by the major ribonuclease RNase E. In bacteria lacking RNase E, the existence of a functional RNA degradosome is still an open question. Here, we report that in the bacterial pathogen Helicobacter pylori, RNA degradation is directed by a minimal RNA degradosome consisting of Hp-RNase J and the only DExD-box RNA helicase of H. pylori, RhpA. We show that the protein complex promotes faster degradation of double-stranded RNA in vitro in comparison with Hp-RNase J alone. The ATPase activity of RhpA is stimulated in the presence of Hp-RNase J, demonstrating that the catalytic capacity of both partners is enhanced upon interaction. Remarkably, both proteins are associated with translating ribosomes and not with individual 30S and 50S subunits. Moreover, Hp-RNase J is not recruited to ribosomes to perform rRNA maturation. Together, our findings imply that in H. pylori, the mRNA-degrading machinery is associated with the translation apparatus, a situation till now thought to be restricted to eukaryotes and archaea.


Assuntos
Endorribonucleases/metabolismo , Helicobacter pylori/enzimologia , Complexos Multienzimáticos/metabolismo , Polirribonucleotídeo Nucleotidiltransferase/metabolismo , RNA Helicases/metabolismo , RNA Mensageiro/metabolismo , Ribossomos/enzimologia , Adenosina Trifosfatases/metabolismo , Bacillus subtilis/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Endorribonucleases/genética , Endorribonucleases/isolamento & purificação , Helicobacter pylori/genética , Helicobacter pylori/crescimento & desenvolvimento , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mutação , Biossíntese de Proteínas , RNA Helicases/isolamento & purificação , RNA de Cadeia Dupla/metabolismo , RNA Ribossômico/metabolismo
11.
J Infect Dis ; 210(9): 1357-66, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24837402

RESUMO

BACKGROUND: Limitations in treatment of biofilm-associated bacterial infections are often due to subpopulation of persistent bacteria (persisters) tolerant to high concentrations of antibiotics. Based on the increased aminoglycoside efficiency under alkaline conditions, we studied the combination of gentamicin and the clinically compatible basic amino acid L-arginine against planktonic and biofilm bacteria both in vitro and in vivo. METHODS: Using Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli bioluminescent strains, we studied the combination of L-arginine and gentamicin against planktonic persisters through time-kill curves of late stationary-phase cultures. In vitro biofilm tolerance towards gentamicin was assessed using PVC 96 well-plates assays. Efficacy of gentamicin as antibiotic lock treatment (ALT) at 5 mg/mL at different pH was evaluated in vivo using a model of totally implantable venous access port (TIVAP) surgically implanted in rats. RESULTS: We demonstrated that a combination of gentamicin and the clinically compatible basic amino acid L-arginine increases in vitro planktonic and biofilm susceptibility to gentamicin, with 99% mortality amongst clinically relevant pathogens, i.e. S. aureus, E. coli and P. aeruginosa persistent bacteria. Moreover, although gentamicin local treatment alone showed poor efficacy in a clinically relevant in vivo model of catheter-related infection, gentamicin supplemented with L-arginine led to complete, long-lasting eradication of S. aureus and E. coli biofilms, when used locally. CONCLUSION: Given that intravenous administration of L-arginine to human patients is well tolerated, combined use of aminoglycoside and the non-toxic adjuvant L-arginine as catheter lock solution could constitute a new option for the eradication of pathogenic biofilms.


Assuntos
Antibacterianos/farmacologia , Arginina/farmacologia , Biofilmes/efeitos dos fármacos , Gentamicinas/farmacologia , Animais , Arginina/administração & dosagem , Infecções Relacionadas a Cateter/tratamento farmacológico , Infecções Relacionadas a Cateter/prevenção & controle , Cateteres Venosos Centrais/efeitos adversos , Cateteres Venosos Centrais/microbiologia , Sinergismo Farmacológico , Quimioterapia Combinada , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/prevenção & controle , Gentamicinas/administração & dosagem , Concentração de Íons de Hidrogênio , Técnicas In Vitro , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/prevenção & controle , Pseudomonas aeruginosa/efeitos dos fármacos , Ratos , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/prevenção & controle , Staphylococcus aureus/efeitos dos fármacos
12.
Nucleic Acids Res ; 39(17): 7564-75, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21666253

RESUMO

Nickel is an essential metal for Helicobacter pylori, as it is the co-factor of two enzymes crucial for colonization, urease and hydrogenase. Nickel is taken up by specific transporters and its intracellular homeostasis depends on nickel-binding proteins to avoid toxicity. Nickel trafficking is controlled by the Ni(II)-dependent transcriptional regulator NikR. In contrast to other NikR proteins, NikR from H. pylori is a pleiotropic regulator that depending on the target gene acts as an activator or a repressor. We systematically quantified the in vivo Ni(2+)-NikR response of 11 direct NikR targets that encode functions related to nickel metabolism, four activated and seven repressed genes. Among these, four targets were characterized for the first time (hpn, hpn-like, hydA and hspA) and NikR binding to their promoter regions was demonstrated by electrophoretic mobility shift assays. We found that NikR-dependent repression was generally set up at higher nickel concentrations than activation. Kinetics of the regulation revealed a gradual and temporal NikR-mediated response to nickel where activation of nickel-protection mechanisms takes place before repression of nickel uptake. Our in vivo study demonstrates, for the first time, a chronological hierarchy in the NikR-dependent transcriptional response to nickel that is coherent with the control of nickel homeostasis in H. pylori.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Helicobacter pylori/genética , Níquel/farmacologia , Proteínas Repressoras/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Helicobacter pylori/efeitos dos fármacos , Helicobacter pylori/metabolismo , Cinética , Transcrição Gênica/efeitos dos fármacos
13.
Trends Biochem Sci ; 33(7): 330-8, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18539464

RESUMO

TonB-dependent transport is a mechanism for active uptake across the outer membrane of Gram-negative bacteria. The system promotes transport of rare nutrients and was thought to be restricted to iron complexes and vitamin B12. Recent experimental evidence of TonB-energized transport of nickel and different carbohydrates, in addition to bioinformatic-based predictions, challenges this notion and reveals that the number and variety of TonB-dependent substrates is underestimated. It is becoming clear that the chemical nature of the substrates, the energetic requirements for transport and the subsequent translocation across the cytoplasmic membrane can differ from those of the well-studied systems for iron complexes and vitamin B12. These findings question the understanding of TonB-dependent uptake and provide insights into the adaptation of bacteria to their environments.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Bactérias/classificação , Proteínas de Bactérias/fisiologia , Transporte Biológico/fisiologia , Proteínas de Membrana/classificação , Proteínas de Membrana/fisiologia , Modelos Biológicos , Filogenia , Vitamina B 12/metabolismo
14.
mBio ; 14(5): e0096723, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37584558

RESUMO

IMPORTANCE: Correct folding of proteins represents a crucial step for their functions. Among the chaperones that control protein folding, the ubiquitous PPIases catalyze the cis/trans-isomerization of peptidyl-prolyl bonds. Only few protein targets of PPIases have been reported in bacteria. To fill this knowledge gap, we performed a large-scale two-hybrid screen to search for targets of the Escherichia coli and Helicobacter pylori SlyD PPIase-metallochaperone. SlyD from both organisms interacts with enzymes (i) containing metal cofactors, (ii) from the central metabolism tricarboxylic acid (TCA) cycle, and (iii) involved in the formation of the essential and ancestral Fe-S cluster cofactor. E. coli and H. pylori ∆slyD mutants present similar phenotypes of diminished susceptibility to antibiotics and to oxidative stress. In H. pylori, measurements of the intracellular ATP content, proton motive force, and activity of TCA cycle proteins suggest that SlyD regulates TCA cycle enzymes by controlling the formation of their indispensable Fe-S clusters.


Assuntos
Proteínas de Escherichia coli , Peptidilprolil Isomerase , Peptidilprolil Isomerase/genética , Escherichia coli , Metalochaperonas/química , Metalochaperonas/metabolismo , Ferro , Dobramento de Proteína , Proteínas de Escherichia coli/metabolismo
15.
Nat Commun ; 14(1): 8072, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057323

RESUMO

In the gastric pathogen Helicobacter pylori, post-transcriptional regulation relies strongly on the activity of the essential ribonuclease RNase J. Here, we elucidated the crystal and cryo-EM structures of RNase J and determined that it assembles into dimers and tetramers in vitro. We found that RNase J extracted from H. pylori is acetylated on multiple lysine residues. Alanine substitution of several of these residues impacts on H. pylori morphology, and thus on RNase J function in vivo. Mutations of Lysine 649 modulates RNase J oligomerization in vitro, which in turn influences ribonuclease activity in vitro. Our structural analyses of RNase J reveal loops that gate access to the active site and rationalizes how acetylation state of K649 can influence activity. We propose acetylation as a regulatory level controlling the activity of RNase J and its potential cooperation with other enzymes of RNA metabolism in H. pylori.


Assuntos
Helicobacter pylori , Ribonucleases , Ribonucleases/metabolismo , Helicobacter pylori/genética , Acetilação , Lisina/metabolismo , Endorribonucleases/metabolismo , Ribonuclease Pancreático/metabolismo
16.
Mol Microbiol ; 79(5): 1260-75, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21208302

RESUMO

Fur, the ferric uptake regulator, is a transcription factor that controls iron metabolism in bacteria. Binding of ferrous iron to Fur triggers a conformational change that activates the protein for binding to specific DNA sequences named Fur boxes. In Helicobacter pylori, HpFur is involved in acid response and is important for gastric colonization in model animals. Here we present the crystal structure of a functionally active HpFur mutant (HpFur2M; C78S-C150S) bound to zinc. Although its fold is similar to that of other Fur and Fur-like proteins, the crystal structure of HpFur reveals a unique structured N-terminal extension and an unusual C-terminal helix. The structure also shows three metal binding sites: S1 the structural ZnS4 site previously characterized biochemically in HpFur and the two zinc sites identified in other Fur proteins. Site-directed mutagenesis and spectroscopy analyses of purified wild-type HpFur and various mutants show that the two metal binding sites common to other Fur proteins can be also metallated by cobalt. DNA protection and circular dichroism experiments demonstrate that, while these two sites influence the affinity of HpFur for DNA, only one is absolutely required for DNA binding and could be responsible for the conformational changes of Fur upon metal binding while the other is a secondary site.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Helicobacter pylori/metabolismo , Ferro/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Sítios de Ligação , DNA Bacteriano/metabolismo , Helicobacter pylori/química , Helicobacter pylori/genética , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Proteínas Repressoras/genética , Alinhamento de Sequência
17.
Adv Microb Physiol ; 80: 1-33, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35489790

RESUMO

Metal acquisition and intracellular trafficking are crucial for all cells and metal ions have been recognized as virulence determinants in bacterial pathogens. Nickel is required for the pathogenicity of H. pylori. This bacterial pathogen colonizes the stomach of about half of the human population worldwide and is associated with gastric cancer that is responsible for 800,000 deaths per year. H. pylori possesses two nickel-enzymes that are essential for in vivo colonization, a [NiFe] hydrogenase and an abundant urease responsible for resistance to gastric acidity. Because of these two enzymes, survival of H. pylori relies on an important supply of nickel, implying tight control strategies to avoid its toxic accumulation or deprivation. H. pylori possesses original mechanisms for nickel uptake, distribution, storage and trafficking that will be discussed in this review. During evolution, acquisition of nickel transporters and specific nickel-binding proteins has been a decisive event to allow Helicobacter species to become able to colonize the stomach. Accordingly, many of the factors involved in these mechanisms are required for mouse colonization by H. pylori. These mechanisms are controlled at different levels including protein interaction networks, transcriptional, post-transcriptional and post-translational regulation. Bismuth is another metal used in combination with antibiotics to efficiently treat H. pylori infections. Although the precise mode of action of bismuth is unknown, many targets have been identified in H. pylori and there is growing evidence that bismuth interferes with the essential nickel pathways. Understanding the metal pathways will help improve treatments against H. pylori and other pathogens.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Animais , Proteínas de Bactérias/metabolismo , Bismuto/metabolismo , Infecções por Helicobacter/metabolismo , Infecções por Helicobacter/microbiologia , Helicobacter pylori/metabolismo , Camundongos , Níquel/metabolismo , Virulência , Fatores de Virulência/metabolismo
18.
Metallomics ; 14(9)2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36002005

RESUMO

Acquisition and homeostasis of essential metals during host colonization by bacterial pathogens rely on metal uptake, trafficking, and storage proteins. How these factors have evolved within bacterial pathogens is poorly defined. Urease, a nickel enzyme, is essential for Helicobacter pylori to colonize the acidic stomach. Our previous data suggest that acquisition of nickel transporters and a histidine-rich protein (HRP) involved in nickel storage in H. pylori and gastric Helicobacter spp. have been essential evolutionary events for gastric colonization. Using bioinformatics, proteomics, and phylogenetics, we extended this analysis to determine how evolution has framed the repertoire of HRPs among 39 Epsilonproteobacteria; 18 gastric and 11 non-gastric enterohepatic (EH) Helicobacter spp., as well as 10 other Epsilonproteobacteria. We identified a total of 213 HRPs distributed in 22 protein families named orthologous groups (OGs) with His-rich domains, including 15 newly described OGs. Gastric Helicobacter spp. are enriched in HRPs (7.7 ± 1.9 HRPs/strain) as compared to EH Helicobacter spp. (1.9 ± 1.0 HRPs/strain) with a particular prevalence of HRPs with C-terminal histidine-rich domains in gastric species. The expression and nickel-binding capacity of several HRPs was validated in five gastric Helicobacter spp. We established the evolutionary history of new HRP families, such as the periplasmic HP0721-like proteins and the HugZ-type heme oxygenases. The expansion of histidine-rich extensions in gastric Helicobacter spp. proteins is intriguing but can tentatively be associated with the presence of the urease nickel enzyme. We conclude that this HRP expansion is associated with unique properties of organisms that rely on large intracellular nickel amounts for their survival.


Assuntos
Helicobacter pylori , Helicobacter , Proteínas de Bactérias/metabolismo , Helicobacter/metabolismo , Helicobacter pylori/metabolismo , Histidina/metabolismo , Níquel/metabolismo , Proteínas , Estômago , Urease/metabolismo
19.
mBio ; 13(5): e0163322, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36154274

RESUMO

Bacterial antibiotic resistance is a major threat to human health. A combination of antibiotics with metals is among the proposed alternative treatments. Only one such combination is successfully used in clinics; it associates antibiotics with the metal bismuth to treat infections by Helicobacter pylori. This bacterial pathogen colonizes the human stomach and is associated with gastric cancer, killing 800,000 individuals yearly. The effect of bismuth in H. pylori treatment is not well understood in particular for sublethal doses such as those measured in the plasma of treated patients. We addressed this question and observed that bismuth induces the formation of homogeneously sized membrane vesicles (MVs) with unique protein cargo content enriched in bismuth-binding proteins, as shown by quantitative proteomics. Purified MVs of bismuth-exposed bacteria were strongly enriched in bismuth as measured by inductively coupled plasma optical emission spectrometry (ICP-OES), unlike bacterial cells from which they originate. Thus, our results revealed a novel function of MVs in bismuth detoxification, where secreted MVs act as tool to discard bismuth from the bacteria. Bismuth also induces the formation of intracellular polyphosphate granules that are associated with changes in nucleoid structure. Nucleoid compaction in response to bismuth was established by immunogold electron microscopy and refined by the first chromosome conformation capture (Hi-C) analysis of H. pylori. Our results reveal that even low doses of bismuth induce profound changes in H. pylori physiology and highlight a novel defense mechanism that involves MV-mediated bismuth extrusion from the bacteria and a probable local DNA protective response where polyphosphate granules are associated with nucleoid compaction. IMPORTANCE Bacterial resistance to antibiotics is a major threat to human health. Treatments combining antibiotics with metals were proposed to circumvent this hurdle. Only one such combination is successfully used in clinics associating antibiotics with the metal bismuth to treat infections by the human pathogen Helicobacter pylori. H. pylori causes 800,000 deaths by gastric cancer yearly. How bismuth impacts H. pylori and its response to this toxic metal were ill defined. We discovered that upon bismuth exposure, H. pylori secretes membrane vesicles that are enriched in bismuth. Bismuth also induces the formation of intracellular polyphosphate granules associated with compaction of the chromosome. Upon bismuth exposure, H. pylori displays both defense and protection mechanisms, with bismuth extrusion by vesicles and shielding of the chromosome.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Humanos , Helicobacter pylori/genética , Bismuto/farmacologia , Bismuto/metabolismo , Bismuto/uso terapêutico , Infecções por Helicobacter/microbiologia , Antibacterianos/metabolismo , Polifosfatos/metabolismo , Quimioterapia Combinada
20.
Front Microbiol ; 12: 712804, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335549

RESUMO

Helicobacter pylori is a Gram-negative bacterial pathogen that colonizes the stomach of about half of the human population worldwide. Infection by H. pylori is generally acquired during childhood and this bacterium rapidly establishes a persistent colonization. H. pylori causes chronic gastritis that, in some cases, progresses into peptic ulcer disease or adenocarcinoma that is responsible for about 800,000 deaths in the world every year. H. pylori has evolved efficient adaptive strategies to colonize the stomach, a particularly hostile acidic environment. Few transcriptional regulators are encoded by the small H. pylori genome and post-transcriptional regulation has been proposed as a major level of control of gene expression in this pathogen. The transcriptome and transcription start sites (TSSs) of H. pylori strain 26695 have been defined at the genome level. This revealed the existence of a total of 1,907 TSSs among which more than 900 TSSs for non-coding RNAs (ncRNAs) including 60 validated small RNAs (sRNAs) and abundant anti-sense RNAs, few of which have been experimentally validated. An RNA degradosome was shown to play a central role in the control of mRNA and antisense RNA decay in H. pylori. Riboregulation, genetic regulation by RNA, has also been revealed and depends both on antisense RNAs and small RNAs. Known examples will be presented in this review. Antisense RNA regulation was reported for some virulence factors and for several type I toxin antitoxin systems, one of which controls the morphological transition of H. pylori spiral shape to round coccoids. Interestingly, the few documented cases of small RNA-based regulation suggest that their mechanisms do not follow the same rules that were well established in the model organism Escherichia coli. First, the genome of H. pylori encodes none of the two well-described RNA chaperones, Hfq and ProQ that are important for riboregulation in several organisms. Second, some of the reported small RNAs target, through "rheostat"-like mechanisms, repeat-rich stretches in the 5'-untranslated region of genes encoding important virulence factors. In conclusion, there are still many unanswered questions about the extent and underlying mechanisms of riboregulation in H. pylori but recent publications highlighted original mechanisms making this important pathogen an interesting study model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA