Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(30): 17551-17557, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32647062

RESUMO

The rational creation of two-component conjugated polymer systems with high levels of phase purity in each component is challenging but crucial for realizing printed soft-matter electronics. Here, we report a mixed-flow microfluidic printing (MFMP) approach for two-component π-polymer systems that significantly elevates phase purity in bulk-heterojunction solar cells and thin-film transistors. MFMP integrates laminar and extensional flows using a specially microstructured shear blade, designed with fluid flow simulation tools to tune the flow patterns and induce shear, stretch, and pushout effects. This optimizes polymer conformation and semiconducting blend order as assessed by atomic force microscopy (AFM), transmission electron microscopy (TEM), grazing incidence wide-angle X-ray scattering (GIWAXS), resonant soft X-ray scattering (R-SoXS), photovoltaic response, and field effect mobility. For printed all-polymer (poly[(5,6-difluoro-2-octyl-2H-benzotriazole-4,7-diyl)-2,5-thiophenediyl[4,8-bis[5-(2-hexyldecyl)-2-thienyl]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl]-2,5-thiophenediyl]) [J51]:(poly{[N,N'-bis(2-octyldodecyl)naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)}) [N2200]) solar cells, this approach enhances short-circuit currents and fill factors, with power conversion efficiency increasing from 5.20% for conventional blade coating to 7.80% for MFMP. Moreover, the performance of mixed polymer ambipolar [poly(3-hexylthiophene-2,5-diyl) (P3HT):N2200] and semiconducting:insulating polymer unipolar (N2200:polystyrene) transistors is similarly enhanced, underscoring versatility for two-component π-polymer systems. Mixed-flow designs offer modalities for achieving high-performance organic optoelectronics via innovative printing methodologies.

2.
Proc Natl Acad Sci U S A ; 117(31): 18231-18239, 2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32703807

RESUMO

The field-effect electron mobility of aqueous solution-processed indium gallium oxide (IGO) thin-film transistors (TFTs) is significantly enhanced by polyvinyl alcohol (PVA) addition to the precursor solution, a >70-fold increase to 7.9 cm2/Vs. To understand the origin of this remarkable phenomenon, microstructure, electronic structure, and charge transport of IGO:PVA film are investigated by a battery of experimental and theoretical techniques, including In K-edge and Ga K-edge extended X-ray absorption fine structure (EXAFS); resonant soft X-ray scattering (R-SoXS); ultraviolet photoelectron spectroscopy (UPS); Fourier transform-infrared (FT-IR) spectroscopy; time-of-flight secondary-ion mass spectrometry (ToF-SIMS); composition-/processing-dependent TFT properties; high-resolution solid-state 1H, 71Ga, and 115In NMR spectroscopy; and discrete Fourier transform (DFT) analysis with ab initio molecular dynamics (MD) liquid-quench simulations. The 71Ga{1H} rotational-echo double-resonance (REDOR) NMR and other data indicate that PVA achieves optimal H doping with a Ga···H distance of ∼3.4 Å and conversion from six- to four-coordinate Ga, which together suppress deep trap defect localization. This reduces metal-oxide polyhedral distortion, thereby increasing the electron mobility. Hydroxyl polymer doping thus offers a pathway for efficient H doping in green solvent-processed metal oxide films and the promise of high-performance, ultra-stable metal oxide semiconductor electronics with simple binary compositions.

3.
Proc Natl Acad Sci U S A ; 116(43): 21421-21426, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31527259

RESUMO

We show that glasses with aligned smectic liquid crystal-like order can be produced by physical vapor deposition of a molecule without any equilibrium liquid crystal phases. Smectic-like order in vapor-deposited films was characterized by wide-angle X-ray scattering. A surface equilibration mechanism predicts the highly smectic-like vapor-deposited structure to be a result of significant vertical anchoring at the surface of the equilibrium liquid, and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy orientation analysis confirms this prediction. Understanding of the mechanism enables informed engineering of different levels of smectic order in vapor-deposited glasses to suit various applications. The preparation of a glass with orientational and translational order from a nonliquid crystal opens up an exciting paradigm for accessing extreme anisotropy in glassy solids.

4.
J Am Chem Soc ; 143(16): 6123-6139, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33848146

RESUMO

The end-capping group (EG) is the essential electron-withdrawing component of nonfullerene acceptors (NFAs) in bulk heterojunction (BHJ) organic solar cells (OSCs). To systematically probe the impact of two frequent EG functionalization strategies, π-extension and halogenation, in A-DAD-A type NFAs, we synthesized and characterized four such NFAs: BT-BIC, LIC, L4F, and BO-L4F. To assess the relative importance of these strategies, we contrast these NFAs with the baseline acceptors, Y5 and Y6. Up to 16.6% power conversion efficiency (PCE) in binary inverted OSCs with BT-BO-L4F combining π-extension and halogenation was achieved. When these two factors are combined, the effect on optical absorption is cumulative. Single-crystal π-π stacking distances are similar for the EG strategies of π-extension. Increasing the alkyl substituent length from BT-L4F to BT-BO-L4F significantly alters the packing motif and eliminates the EG core interactions of BT-L4F. Electronic structure computations reveal some of the largest NFA π-π electronic couplings observed to date, 103.8 meV in BT-L4F and 47.5 meV in BT-BO-L4F. Computed electronic reorganization energies, 132 and 133 meV for BT-L4F and BT-BO-L4F, respectively, are also lower than Y6 (150 meV). BHJ blends show preferential π-face-on orientation, and both fluorination and π-extension increase NFA crystallinity. Femto/nanosecond transient absorption spectroscopy (fs/nsTA) and integrated photocurrent device analysis (IPDA) indicate that π-extension modifies the phase separation to enhance film ordering and carrier mobility, while fluorination suppresses unimolecular recombination. This systematic study highlights the synergistic effects of NFA π-extension and fluorination in affording efficient OSCs and provides insights into designing next-generation materials.

5.
Nat Mater ; 19(5): 559-565, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32015530

RESUMO

Photocatalysts formed from a single organic semiconductor typically suffer from inefficient intrinsic charge generation, which leads to low photocatalytic activities. We demonstrate that incorporating a heterojunction between a donor polymer (PTB7-Th) and non-fullerene acceptor (EH-IDTBR) in organic nanoparticles (NPs) can result in hydrogen evolution photocatalysts with greatly enhanced photocatalytic activity. Control of the nanomorphology of these NPs was achieved by varying the stabilizing surfactant employed during NP fabrication, converting it from a core-shell structure to an intermixed donor/acceptor blend and increasing H2 evolution by an order of magnitude. The resulting photocatalysts display an unprecedentedly high H2 evolution rate of over 60,000 µmol h-1 g-1 under 350 to 800 nm illumination, and external quantum efficiencies over 6% in the region of maximum solar photon flux.

6.
J Am Chem Soc ; 142(34): 14532-14547, 2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32698577

RESUMO

Emerging nonfullerene acceptors (NFAs) with crystalline domains enable high-performance bulk heterojunction (BHJ) solar cells. Thermal annealing is known to enhance the BHJ photoactive layer morphology and performance. However, the microscopic mechanism of annealing-induced performance enhancement is poorly understood in emerging NFAs, especially regarding competing factors. Here, optimized thermal annealing of model system PBDB-TF:Y6 (Y6 = 2,2'-((2Z,2'Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2″,3'':4',5']thieno[2',3':4,5]pyrrolo[3,2-g]thieno[2',3':4,5]-thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile) decreases the open circuit voltage (VOC) but increases the short circuit current (JSC) and fill factor (FF) such that the resulting power conversion efficiency (PCE) increases from 14 to 15% in the ambient environment. Here we systematically investigate these thermal annealing effects through in-depth characterizations of carrier mobility, film morphology, charge photogeneration, and recombination using SCLC, GIXRD, AFM, XPS, NEXAFS, R-SoXS, TEM, STEM, fs/ns TA spectroscopy, 2DES, and impedance spectroscopy. Surprisingly, thermal annealing does not alter the film crystallinity, R-SoXS characteristic size scale, relative average phase purity, or TEM-imaged phase separation but rather facilitates Y6 migration to the BHJ film top surface, changes the PBDB-TF/Y6 vertical phase separation and intermixing, and reduces the bottom surface roughness. While these morphology changes increase bimolecular recombination (BR) and lower the free charge (FC) yield, they also increase the average electron and hole mobility by at least 2-fold. Importantly, the increased µh dominates and underlies the increased FF and PCE. Single-crystal X-ray diffraction reveals that Y6 molecules cofacially pack via their end groups/cores, with the shortest π-π distance as close as 3.34 Å, clarifying out-of-plane π-face-on molecular orientation in the nanocrystalline BHJ domains. DFT analysis of Y6 crystals reveals hole/electron reorganization energies of as low as 160/150 meV, large intermolecular electronic coupling integrals of 12.1-37.9 meV rationalizing the 3D electron transport, and relatively high µe of 10-4 cm2 V-1 s-1. Taken together, this work clarifies the richness of thermal annealing effects in high-efficiency NFA solar cells and tasks for future materials design.

7.
J Am Chem Soc ; 141(34): 13410-13420, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31379156

RESUMO

Achieving efficient polymer solar cells (PSCs) requires a structurally optimal donor-acceptor heterojunction morphology. Here we report the combined experimental and theoretical characterization of a benzodithiophene-benzothiadiazole donor polymer series (PBTZF4-R; R = alkyl substituent) blended with the non-fullerene acceptor ITIC-Th and analyze the effects of substituent dimensions on blend morphology, charge transport, carrier dynamics, and PSC metrics. Varying substituent dimensions has a pronounced effect on the blend morphology with a direct link between domain purity, to some extent domain dimensions, and charge generation and collection. The polymer with the smallest alkyl substituent yields the highest PSC power conversion efficiency (PCE, 11%), reflecting relatively small, high-purity domains and possibly benefiting from "matched" donor polymer-small molecule acceptor orientations. The distinctive morphologies arising from the substituents are investigated using molecular dynamics (MD) simulations which reveal that substituent dimensions dictate a well-defined set of polymer conformations, in turn driving chain aggregation and, ultimately, the various film morphologies and mixing with acceptor small molecules. A straightforward energetic parameter explains the experimental polymer domain morphological trends, hence PCE, and suggests strategies for substituent selection to optimize PSC materials morphologies.

8.
Chem Rev ; 117(9): 6332-6366, 2017 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-28414244

RESUMO

Solution-processed organic films are a facile route to high-speed, low cost, large-area deposition of electrically functional components (transistors, solar cells, emitters, etc.) that can enable a diversity of emerging technologies, from Industry 4.0, to the Internet of things, to point-of-use heath care and elder care. The extreme sensitivity of the functional performance of organic films to structure and the general nonequilibrium nature of solution drying result in extreme processing-performance correlations. In this Review, we highlight insights into the fundamentals of solution-based film deposition afforded by recent state-of-the-art in situ measurements of functional film drying. Emphasis is placed on multimodal studies that combine surface-sensitive X-ray scattering (GIWAXS or GISAXS) with optical characterization to clearly define the evolution of solute structure (aggregation, crystallinity, and morphology) with film thickness.

9.
Adv Funct Mater ; 29(5)2018.
Artigo em Inglês | MEDLINE | ID: mdl-33061870

RESUMO

Intra- and intermolecular ordering greatly impact the electronic and optoelectronic properties of semiconducting polymers. Despite much prior efforts regarding molecular packing, the interrelationship between ordering of alkyl sidechains and conjugated backbones has not been fully detailed. We report here the discovery of a highly ordered alkyl sidechain phase in six representative semiconducting polymers, determined from distinct spectroscopic and diffraction signatures. The sidechain ordering exhibits unusually large coherence lengths of at least 70 nm, induces torsional/twisting backbone disorder, and results in a vertically layered multilayer nanostructure with ordered sidechain layers alternating with disordered backbone layers. Calorimetry and in-situ variable temperature scattering measurements in a model system PBnDT-FTAZ clearly delineate this competition of ordering that prevents the simultaneous long-range order of both moieties. The long-range sidechain ordering can be exploited as a transient state to fabricate PBnDT-FTAZ films with an atypical edge-on texture and 2.5x improved OFET mobility. The observed influence of ordering between the moieties implies that improved molecular design could produce synergistic rather than destructive ordering effects. Given the large sidechain coherence lengths observed, such synergistic ordering should greatly improve the coherence length of backbone ordering and thereby improve electronic and optoelectronic properties such as charge transport and exciton diffusion lengths.

10.
Artigo em Inglês | MEDLINE | ID: mdl-35529422

RESUMO

Organic semiconductors may be processed from fluids using graphical arts printing and patterning techniques to create complex circuitry. Because organic semiconductors are weak van der Waals solids, the creation of glassy phases during processing is quite common. Because structural disorder leads to electronic disorder, it is necessary to understand these phases to optimize and control the electronic properties of these materials. Here we review the significance of glassy phases in organic semiconductors. We examine challenges in the measurement of the glass transition temperature and the accurate classification of phases in these relatively rigid materials. Device implications of glassy phases are discussed. Processing schemes that are grounded in the principles of glass physics and sound glass transition temperature measurement will more quickly achieve desired structure and electronic characteristics, accelerating the exciting progress of organic semiconductor technology development.

11.
J Am Chem Soc ; 137(1): 540-9, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25489993

RESUMO

We demonstrate the use of poly(sulfobetaine methacrylate) (PSBMA), and its pyrene-containing copolymer, as solution-processable work function reducers for inverted organic electronic devices. A notable feature of PSBMA is its orthogonal solubility relative to solvents typically employed in the processing of organic semiconductors. A strong permanent dipole moment on the sulfobetaine moiety was calculated by density functional theory. PSBMA interlayers reduced the work function of metals, graphene, and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) by over 1 eV, and an ultrathin interlayer of PSBMA reduced the electron injection barrier between indium tin oxide (ITO) and C70 by 0.67 eV. As a result, the performance of organic photovoltaic devices with PSBMA interlayers is significantly improved, and enhanced electron injection is demonstrated in electron-only devices with ITO, PEDOT:PSS, and graphene electrodes. This work makes available a new class of dipole-rich, counterion-free, pH insensitive polymer interlayers with demonstrated effectiveness in inverted devices.

12.
J Am Chem Soc ; 137(16): 5256-9, 2015 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-25856143

RESUMO

Here we show that the charge transfer (CT) absorption signal in bulk-heterojunction solar cell blends, measured by photothermal deflection spectroscopy, is directly proportional to the density of molecular donor:acceptor interfaces. Since the optical transitions from the ground state to the interfacial CT state are weakly allowed at photon energies below the optical gap of both the donor and acceptor, we can exploit the use of this sensitive linear absorption spectroscopy for such quantification. Moreover, we determine the absolute molar extinction coefficient of the CT transition for an archetypical polymer:fullerene interface. The latter is ∼100 times lower than the extinction coefficient of the donor chromophore involved, allowing us to experimentally estimate the transition dipole moment as 0.3 D and the electronic coupling between the ground and CT states to be on the order of 30 meV.

13.
ACS Nano ; 18(17): 11311-11322, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38623826

RESUMO

Hierarchical structure-within-structure assemblies offer a route toward increasingly complex and multifunctional materials while pushing the limits of block copolymer self-assembly. We present a detailed study of the self-assembly of a series of fluorinated high-χ block copolymers (BCPs) prepared via postmodification of a single poly(styrene)-block-poly(glycidyl methacrylate) (S-b-G) parent polymer with the fluorinated alkylthiol pendent groups containing 1, 6, or 8 fluorinated carbons (termed trifluoro-ethanethiol (TFET), perfluoro-octylthiol (PFOT), and perfluoro-decylthiol (PFDT), respectively). Bulk X-ray scattering of thermally annealed samples demonstrates hierarchical molecular assembly with phase separation between the two blocks and within the fluorinated block. The degree of ordering within the fluorinated block is highly sensitive to synthetic variation; a lamellar sublattice was formed for S-b-GPFOT and S-b-GPFDT. Thermal analyses of S-b-GPFOT reveal that the fluorinated block exhibits liquid crystal-like ordering. The complex thin-film self-assembly behavior of an S-b-GPFOT polymer was investigated using real-space (atomic force microscopy and scanning electron microscopy) and reciprocal-space (resonant soft X-ray scattering (RSoXS), grazing incidence small- and wide-angle scattering) measurements. After thermal annealing in nitrogen or vacuum, films thicker than 1.5 times the primary lattice spacing exhibit a 90-degree grain boundary, exposing a thin layer of vertical lamellae at the free interface, while exhibiting horizontal lamellae on the preferential (polystyrene brush) substrate. RSoXS measurements reveal the near-perfect orthogonality between the primary and sublattice orientations, demonstrating hierarchical patterning at the nanoscale.

14.
JACS Au ; 3(7): 1931-1938, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37502150

RESUMO

Physical vapor deposition (PVD) can prepare organic glasses with a preferred molecular orientation. The relationships between deposition conditions and orientation have been extensively investigated in the film bulk. The role of interfaces on the structure is less well understood and remains a key knowledge gap, as the interfacial region can govern glass stability and optoelectronic properties. Robust experimental characterization has remained elusive due to complexities in interrogating molecular organization in amorphous, organic materials. Polarized soft X-rays are sensitive to both the composition and the orientation of transition dipole moments in the film, making them uniquely suited to probe molecular orientation in amorphous soft matter. Here, we utilize polarized resonant soft X-ray reflectivity (P-RSoXR) to simultaneously depth profile the composition and molecular orientation of a bilayer prepared through the physical vapor deposition of 1,4-di-[4-(N,N-diphenyl)amino]styryl-benzene (DSA-Ph) on a film of aluminum-tris(8-hydroxyquinoline) (Alq3). The bulk orientation of the DSA-Ph layer is controlled by varying deposition conditions. Utilizing P-RSoXR to depth profile the films enables determination of both the bulk orientation of DSA-Ph and the orientation near the Alq3 interface. At the Alq3 surface, DSA-Ph always lies with its long axis parallel to the interface, before transitioning into the bulk orientation. This is likely due to the lower mobility and higher glass transition of Alq3, as the first several monolayers of DSA-Ph deposited on Alq3 appear to behave as a blend. We further show how orientation at the interface correlates with the bulk behavior of a codeposited glass of similar blend composition, demonstrating a straightforward approach to predicting molecular orientation at heterointerfaces. This work provides key insights into how molecules orient during vapor deposition and offers methods to predict this property, a critical step toward controlling interfacial behavior in soft matter.

15.
J Appl Crystallogr ; 56(Pt 3): 868-883, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37284258

RESUMO

Polarized resonant soft X-ray scattering (P-RSoXS) has emerged as a powerful synchrotron-based tool that combines the principles of X-ray scattering and X-ray spectroscopy. P-RSoXS provides unique sensitivity to molecular orientation and chemical heterogeneity in soft materials such as polymers and biomaterials. Quantitative extraction of orientation information from P-RSoXS pattern data is challenging, however, because the scattering processes originate from sample properties that must be represented as energy-dependent three-dimensional tensors with heterogeneities at nanometre to sub-nanometre length scales. This challenge is overcome here by developing an open-source virtual instrument that uses graphical processing units (GPUs) to simulate P-RSoXS patterns from real-space material representations with nanoscale resolution. This computational framework - called CyRSoXS (https://github.com/usnistgov/cyrsoxs) - is designed to maximize GPU performance, including algorithms that minimize both communication and memory footprints. The accuracy and robustness of the approach are demonstrated by validating against an extensive set of test cases, which include both analytical solutions and numerical comparisons, demonstrating an acceleration of over three orders of magnitude relative to the current state-of-the-art P-RSoXS simulation software. Such fast simulations open up a variety of applications that were previously computationally unfeasible, including pattern fitting, co-simulation with the physical instrument for operando analytics, data exploration and decision support, data creation and integration into machine learning workflows, and utilization in multi-modal data assimilation approaches. Finally, the complexity of the computational framework is abstracted away from the end user by exposing CyRSoXS to Python using Pybind. This eliminates input/output requirements for large-scale parameter exploration and inverse design, and democratizes usage by enabling seamless integration with a Python ecosystem (https://github.com/usnistgov/nrss) that can include parametric morphology generation, simulation result reduction, comparison with experiment and data fitting approaches.

16.
ACS Appl Mater Interfaces ; 14(1): 1537-1545, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34935335

RESUMO

The use of polymer-polymer blends to tailor mechanical properties and improve electrical performance is becoming widespread in the field of printed electronics. Similarly, meniscus-guided coating can be used to tailor electrical properties through alignment of the semiconducting material. We report on a long-wavelength instability during blade coating of a semiconducting polymer/elastomer blend for organic transistor applications that results in significant variation of the semiconducting polymer nanofibril alignment across the instability period. By correlating measurements over diverse (nm to mm) length scales, we can directly relate the charge transport in top-gate transistors to the local polymer nanofibril alignment. Hole mobility is directly correlated to the local alignment and shows an ≈2 × variation across the instability for devices aligned with the coating direction. The potential for long-wavelength instabilities to create device-relevant morphology variations should be considered when optimizing coating conditions. These results reveal considerable potential for error in assuming that smooth films are necessarily structurally uniform; material structure may spatially vary for some coating methods, leading to a correlated, spatially varying device performance.

17.
ACS Appl Mater Interfaces ; 14(2): 3455-3466, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34982543

RESUMO

The ability to control structure in molecular glasses has enabled them to play a key role in modern technology; in particular, they are ubiquitous in organic light-emitting diodes. While the interplay between bulk structure and optoelectronic properties has been extensively investigated, few studies have examined molecular orientation near buried interfaces despite its critical role in emergent functionality. Direct, quantitative measurements of buried molecular orientation are inherently challenging, and many methods are insensitive to orientation in amorphous soft matter or lack the necessary spatial resolution. To overcome these challenges, we use polarized resonant soft X-ray reflectivity (p-RSoXR) to measure nanometer-resolved, molecular orientation depth profiles of vapor-deposited thin films of an organic semiconductor Tris(4-carbazoyl-9-ylphenyl)amine (TCTA). Our depth profiling approach characterizes the vertical distribution of molecular orientation and reveals that molecules near the inorganic substrate and free surface have a different, nearly isotropic orientation compared to those of the anisotropic bulk. Comparison of p-RSoXR results with near-edge X-ray absorption fine structure spectroscopy and optical spectroscopies reveals that TCTA molecules away from the interfaces are predominantly planar, which may contribute to their attractive charge transport qualities. Buried interfaces are further investigated in a TCTA bilayer (each layer deposited under separate conditions resulting in different orientations) in which we find a narrow interface between orientationally distinct layers extending across ≈1 nm. Coupling this result with molecular dynamics simulations provides additional insight into the formation of interfacial structure. This study characterizes the local molecular orientation at various types of buried interfaces in vapor-deposited glasses and provides a foundation for future studies to develop critical structure-function relationships.

18.
J Am Chem Soc ; 133(3): 412-5, 2011 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-21155572

RESUMO

The blend films of small-molecule semiconductors with insulating polymers exhibit not only excellent solution processability but also superior performance characteristics in organic thin-film transistors (OTFTs) over those of neat small-molecule semiconductors. To understand the underlying mechanism, we studied triethylsilylethynyl anthradithiophene (TESADT) with small amounts of impurity formed by weak UV exposure. OTFTs with neat impure TESADT had drastically reduced field-effect mobility (<10(-5) cm(2)/(V s)), and a disappearance of the high-temperature crystal phase was observed for neat impure TESADT. However, the mobility of the blend films of the UV-exposed TESADT with poly(α-methylstyrene) (PαMS) is recovered to that of a fresh TESADT-PαMS blend (0.040 cm(2)/(V s)), and the phase transition characteristics partly return to those of fresh TESADT films. These results are corroborated by OTFT results on "aged" TIPS-pentacene. These observations, coupled with the results of neutron reflectivity study, indicate that the formation of a vertically phase-separated layer of crystalline small-molecule semiconductors allows the impurity species to remain preferentially in the adjacent polymer-rich layer. Such a "zone-refinement effect" in blend semiconductors effectively removes the impurity species that are detrimental to organic electronic devices from the critical charge-transporting interface region.

19.
J Am Chem Soc ; 133(38): 15073-84, 2011 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-21815633

RESUMO

We describe a series of highly soluble diketo pyrrolo-pyrrole (DPP)-bithiophene copolymers exhibiting field effect hole mobilities up to 0.74 cm(2) V(-1) s(-1), with a common synthetic motif of bulky 2-octyldodecyl side groups on the conjugated backbone. Spectroscopy, diffraction, and microscopy measurements reveal a transition in molecular packing behavior from a preferentially edge-on orientation of the conjugated plane to a preferentially face-on orientation as the attachment density of the side chains increases. Thermal annealing generally reduces both the face-on population and the misoriented edge-on domains. The highest hole mobilities of this series were obtained from edge-on molecular packing and in-plane liquid-crystalline texture, but films with a bimodal orientation distribution and no discernible in-plane texture exhibited surprisingly comparable mobilities. The high hole mobility may therefore arise from the molecular packing feature common to the entire polymer series: backbones that are strictly oriented parallel to the substrate plane and coplanar with other backbones in the same layer.


Assuntos
Polímeros/química , Pirróis/química , Estrutura Molecular , Tamanho da Partícula , Polímeros/síntese química , Semicondutores , Estereoisomerismo , Propriedades de Superfície , Tiofenos/química
20.
J Phys Condens Matter ; 33(16)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33498032

RESUMO

We present the design and performance of a polarized resonant soft x-ray scattering (RSoXS) station for soft matter characterization built by the national institute of standards and technology at the national synchrotron light source-II (NSLS-II). The RSoXS station is located within the spectroscopy soft and tender beamline suite at NSLS-II located in Brookhaven national laboratory, New York. Numerous elements of the RSoXS station were designed for optimal performance for measurements on soft matter systems, where it is of critical importance to minimize beam damage and maximize collection efficiency of polarized x-rays. These elements include a novel optical design, sample manipulator and sample environments, as well as detector setups. Finally, we will report the performance of the measurement station, including energy resolution, higher harmonic content and suppression methods, the extent and mitigation of the carbon absorption dip on optics, and the range of polarizations available from the elliptically polarized undulator source.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA