Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecology ; 96(8): 2300-10, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26405754

RESUMO

Plant species are important drivers of soil microbial communities. However, how plant functional traits are shaping these communities has received less attention though linking plant and microbial traits is crucial for better understanding plant-microbe interactions. Our objective was to determine how plant-microbe interactions were affected by plant traits. Specifically we analyzed how interactions between plant species and microbes involved in nitrogen cycling were affected by plant traits related to 'nitrogen nutrition in interaction with soil nitrogen availability. Eleven plant species, selected along an oligotrophic-nitrophilic gradient, were grown individually in a nitrogen-poor soil with two levels of nitrate availability. Plant traits for both carbon and nitrogen nutrition were measured and the genetic structure and abundance of rhizosphere. microbial communities, in particular the ammonia oxidizer and nitrate reducer guilds, were analyzed. The structure of the bacterial community in the rhizosphere differed significantly between plant species and these differences depended on nitrogen availability. The results suggest that the rate of nitrogen uptake per unit of root biomass and per day is a key plant trait, explaining why the effect of nitrogen availability on the structure of the bacterial community depends on the plant species. We also showed that the abundance of nitrate reducing bacteria always decreased with increasing nitrogen uptake per unit of root biomass per day, indicating that there was competition for nitrate between plants and nitrate reducing bacteria. This study demonstrates that nitrate-reducing microorganisms may be adversely affected by plants with a high nitrogen uptake rate. Our work puts forward the role of traits related to nitrogen in plant-microbe interactions, whereas carbon is commonly considered as the main driver. It also suggests that plant traits related to ecophysiological processes, such as nitrogen uptake rates, are more relevant for understanding plant-microbe interactions than composite traits, such as nitrophily, which are related to a number of ecophysiological processes.


Assuntos
Nitrogênio/metabolismo , Plantas/metabolismo , Rizosfera , Microbiologia do Solo , Bactérias/genética , Crenarchaeota/genética , RNA Arqueal/genética , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Solo/química
2.
Front Microbiol ; 12: 674556, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34127925

RESUMO

Plant-plant associations, notably cereal-legume intercropping, have been proposed in agroecology to better value resources and thus reduce the use of chemical inputs in agriculture. Wheat-pea intercropping allows to decreasing the use of nitrogen fertilization through ecological processes such as niche complementarity and facilitation. Rhizosphere microbial communities may account for these processes, since they play a major role in biogeochemical cycles and impact plant nutrition. Still, knowledge on the effect of intecropping on the rhizosphere microbiota remains scarce. Especially, it is an open question whether rhizosphere microbial communities in cereal-legume intercropping are the sum or not of the microbiota of each plant species cultivated in sole cropping. In the present study, we assessed the impact of wheat and pea in IC on the diversity and structure of their respective rhizosphere microbiota. For this purpose, several cultivars of wheat and pea were cultivated in sole and intercropping. Roots of wheat and pea were collected separately in intercropping for microbiota analyses to allow deciphering the effect of IC on the bacterial community of each plant species/cultivar tested. Our data confirmed the well-known specificity of the rhizosphere effect and further stress the differentiation of bacterial communities between pea genotypes (Hr and hr). As regards the intercropping effect, diversity and structure of the rhizosphere microbiota were comparable to sole cropping. However, a specific co-occurrence pattern in each crop rhizosphere due to intercropping was revealed through network analysis. Bacterial co-occurrence network of wheat rhizosphere in IC was dominated by OTUs belonging to Alphaproteobacteria, Bacteroidetes and Gammaproteobacteria. We also evidenced a common network found in both rhizosphere under IC, indicating the interaction between the plant species; this common network was dominated by Acidobacteria, Alphaproteobacteria, and Bacteroidetes, with three OTUs belonging to Acidobacteria, Betaproteobacteria and Chloroflexi that were identified as keystone taxa. These findings indicate more complex rhizosphere bacterial networks in intercropping. Possible implications of these conclusions are discussed in relation with the functioning of rhizosphere microbiota in intercropping accounting for its beneficial effects.

3.
Nat Biotechnol ; 26(8): 909-15, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18660804

RESUMO

Plant-parasitic nematodes are major agricultural pests worldwide and novel approaches to control them are sorely needed. We report the draft genome sequence of the root-knot nematode Meloidogyne incognita, a biotrophic parasite of many crops, including tomato, cotton and coffee. Most of the assembled sequence of this asexually reproducing nematode, totaling 86 Mb, exists in pairs of homologous but divergent segments. This suggests that ancient allelic regions in M. incognita are evolving toward effective haploidy, permitting new mechanisms of adaptation. The number and diversity of plant cell wall-degrading enzymes in M. incognita is unprecedented in any animal for which a genome sequence is available, and may derive from multiple horizontal gene transfers from bacterial sources. Our results provide insights into the adaptations required by metazoans to successfully parasitize immunocompetent plants, and open the way for discovering new antiparasitic strategies.


Assuntos
Genoma Helmíntico , Plantas/parasitologia , Tylenchoidea/genética , Animais , Sequência de Bases , Mapeamento Cromossômico , DNA Complementar/genética , DNA de Helmintos/genética , Etiquetas de Sequências Expressas , Genes de Helmintos , Dados de Sequência Molecular , Doenças das Plantas/parasitologia , Raízes de Plantas/parasitologia , Interferência de RNA , Alinhamento de Sequência , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA