Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Psychiatry ; 27(4): 2061-2067, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35236959

RESUMO

Antipsychotic drugs are the current first-line of treatment for schizophrenia and other psychotic conditions. However, their molecular effects on the human brain are poorly studied, due to difficulty of tissue access and confounders associated with disease status. Here we examine differences in gene expression and DNA methylation associated with positive antipsychotic drug toxicology status in the human caudate nucleus. We find no genome-wide significant differences in DNA methylation, but abundant differences in gene expression. These gene expression differences are overall quite similar to gene expression differences between schizophrenia cases and controls. Interestingly, gene expression differences based on antipsychotic toxicology are different between brain regions, potentially due to affected cell type differences. We finally assess similarities with effects in a mouse model, which finds some overlapping effects but many differences as well. As a first look at the molecular effects of antipsychotics in the human brain, the lack of epigenetic effects is unexpected, possibly because long term treatment effects may be relatively stable for extended periods.


Assuntos
Antipsicóticos , Transtornos Psicóticos , Esquizofrenia , Animais , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Núcleo Caudado , Humanos , Camundongos , Fenótipo , Transtornos Psicóticos/tratamento farmacológico , Esquizofrenia/tratamento farmacológico , Esquizofrenia/genética
2.
Mol Psychiatry ; 25(12): 3267-3277, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-30131587

RESUMO

Cigarette smoking during pregnancy is a major public health concern. While there are well-described consequences in early child development, there is very little known about the effects of maternal smoking on human cortical biology during prenatal life. We therefore performed a genome-wide differential gene expression analysis using RNA sequencing (RNA-seq) on prenatal (N = 33; 16 smoking-exposed) as well as adult (N = 207; 57 active smokers) human postmortem prefrontal cortices. Smoking exposure during the prenatal period was directly associated with differential expression of 14 genes; in contrast, during adulthood, despite a much larger sample size, only two genes showed significant differential expression (FDR < 10%). Moreover, 1,315 genes showed significantly different exposure effects between maternal smoking during pregnancy and direct exposure in adulthood (FDR < 10%)-these differences were largely driven by prenatal differences that were enriched for pathways previously implicated in addiction and synaptic function. Furthermore, prenatal and age-dependent differentially expressed genes were enriched for genes implicated in non-syndromic autism spectrum disorder (ASD) and were differentially expressed as a set between patients with ASD and controls in postmortem cortical regions. These results underscore the enhanced sensitivity to the biological effect of smoking exposure in the developing brain and offer insight into how maternal smoking during pregnancy affects gene expression in the prenatal human cortex. They also begin to address the relationship between in utero exposure to smoking and the heightened risks for the subsequent development of neuropsychiatric disorders.


Assuntos
Transtorno do Espectro Autista , Efeitos Tardios da Exposição Pré-Natal , Adulto , Encéfalo , Feminino , Humanos , Exposição Materna , Gravidez , Efeitos Tardios da Exposição Pré-Natal/genética , Análise de Sequência de RNA , Fumar/efeitos adversos , Fumar/genética , Transcriptoma/genética
3.
Acta Neuropathol ; 137(4): 557-569, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30712078

RESUMO

Late-onset Alzheimer's disease (AD) is a complex age-related neurodegenerative disorder that likely involves epigenetic factors. To better understand the epigenetic state associated with AD, we surveyed 420,852 DNA methylation (DNAm) sites from neurotypical controls (N = 49) and late-onset AD patients (N = 24) across four brain regions (hippocampus, entorhinal cortex, dorsolateral prefrontal cortex and cerebellum). We identified 858 sites with robust differential methylation collectively annotated to 772 possible genes (FDR < 5%, within 10 kb). These sites were overrepresented in AD genetic risk loci (p = 0.00655) and were enriched for changes during normal aging (p < 2.2 × 10-16), and nearby genes were enriched for processes related to cell-adhesion, immunity, and calcium homeostasis (FDR < 5%). To functionally validate these associations, we generated and analyzed corresponding transcriptome data to prioritize 130 genes within 10 kb of the differentially methylated sites. These 130 genes were differentially expressed between AD cases and controls and their expression was associated with nearby DNAm (p < 0.05). This integrated analysis implicates novel genes in Alzheimer's disease, such as ANKRD30B. These results highlight DNAm differences in Alzheimer's disease that have gene expression correlates, further implicating DNAm as an epigenetic mechanism underlying pathological molecular changes associated with AD. Furthermore, our framework illustrates the value of integrating epigenetic and transcriptomic data for understanding complex disease.


Assuntos
Doença de Alzheimer/genética , Encéfalo/metabolismo , Metilação de DNA , Perfilação da Expressão Gênica , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Encéfalo/patologia , Ilhas de CpG/genética , Bases de Dados Genéticas , Epigenômica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
4.
J Neurosci Res ; 96(1): 16-20, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28609565

RESUMO

A postmortem human brain collection to study posttraumatic stress disorder (PTSD) is critical for uncovering the molecular mechanisms that contribute to this psychiatric disorder. We describe here the PTSD brain collection at the Lieber Institute for Brain Development in Baltimore, Maryland, consisting of postmortem brain donations acquired between 2012 and 2017. Thus far, 87 brains from individuals meeting DSM-5 criteria for PTSD were collected after consent was obtained from legal next-of-kin, and subsequently clinically characterized for molecular studies. PTSD brain donors had high rates of comorbid diagnoses, including depression (62.1%), substance abuse (74.7%), drug-related death (69.0%), and suicide completion (17.2%). PTSD cases were subdivided into two categories: combat-related PTSD (n = 24) and noncombat/domestic PTSD (n = 63). The major differences between the combat-related and domestic PTSD cohorts were sex, drug-related death, and the prevalence of bipolar disorder (BPD) comorbidity. The combat-related group was entirely male, with only one BPD subject (4.2%), and had significantly fewer drug-related deaths (45.8%) in contrast to the domestic group (31.8% male, 36.5% bipolar, and 77.8% drug-related deaths). Medical examiners' offices, particularly in areas with higher military populations, are an excellent source for PTSD brain donations of both combat-related and domestic PTSD.


Assuntos
Encéfalo/patologia , Manejo de Espécimes/normas , Transtornos de Estresse Pós-Traumáticos/patologia , Obtenção de Tecidos e Órgãos/normas , Adulto , Médicos Legistas/normas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Manejo de Espécimes/métodos , Transtornos de Estresse Pós-Traumáticos/diagnóstico , Transtornos de Estresse Pós-Traumáticos/psicologia , Obtenção de Tecidos e Órgãos/métodos
5.
J Neurosci Res ; 96(1): 21-30, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-27775175

RESUMO

Posttraumatic stress disorder (PTSD) follows exposure to a traumatic event in susceptible individuals. Recently, genome-wide association studies have identified a number of genetic sequence variants that are associated with the risk of developing PTSD. To follow up on identifying the molecular mechanisms of these risk variants, we performed genotype to RNA sequencing-derived quantitative expression (whole gene, exon, and exon junction levels) analysis in the dorsolateral prefrontal cortex (DLPFC) of normal postmortem human brains. We further investigated genotype-gene expression associations within the amygdala in a smaller independent RNA sequencing (Genotype-Tissue Expression [GTEx]) dataset. Our DLPFC analyses identified significant expression quantitative trait loci (eQTL) associations for a "candidate" PTSD risk SNP rs363276 and the expression of two genes: SLC18A2 and PDZD8, where the PTSD risk/minor allele T was associated with significantly lower levels of gene expression for both genes, in the DLPFC. These eQTL associations were independently confirmed in the amygdala from the GTEx database. Rs363276 "T" carriers also showed significantly increased activity in the amygdala during an emotional face-matching task in healthy volunteers. Taken together, our preliminary findings in normal human brains represent a tractable approach to identify mechanisms by which genetic variants potentially increase an individual's risk for developing PTSD. © 2016 Wiley Periodicals, Inc.


Assuntos
Encéfalo/patologia , Predisposição Genética para Doença/genética , Variação Genética/genética , Locos de Características Quantitativas/genética , Transtornos de Estresse Pós-Traumáticos/genética , Transtornos de Estresse Pós-Traumáticos/patologia , Adulto , Idoso , Metilação de DNA/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco , Adulto Jovem
6.
Artigo em Inglês | MEDLINE | ID: mdl-38830989

RESUMO

Smoking is a leading cause of preventable morbidity and mortality. Smoking is heritable, and genome-wide association studies (GWASs) of smoking behaviors have identified hundreds of significant loci. Most GWAS-identified variants are noncoding with unknown neurobiological effects. We used genome-wide genotype, DNA methylation, and RNA sequencing data in postmortem human nucleus accumbens (NAc) to identify cis-methylation/expression quantitative trait loci (meQTLs/eQTLs), investigate variant-by-cigarette smoking interactions across the genome, and overlay QTL evidence at smoking GWAS-identified loci to evaluate their regulatory potential. Active smokers (N = 52) and nonsmokers (N = 171) were defined based on cotinine biomarker levels and next-of-kin reporting. We simultaneously tested variant and variant-by-smoking interaction effects on methylation and expression, separately, adjusting for biological and technical covariates and correcting for multiple testing using a two-stage procedure. We found >2 million significant meQTL variants (padj < 0.05) corresponding to 41,695 unique CpGs. Results were largely driven by main effects, and five meQTLs, mapping to NUDT12, FAM53B, RNF39, and ADRA1B, showed a significant interaction with smoking. We found 57,683 significant eQTL variants for 958 unique eGenes (padj < 0.05) and no smoking interactions. Colocalization analyses identified loci with smoking-associated GWAS variants that overlapped meQTLs/eQTLs, suggesting that these heritable factors may influence smoking behaviors through functional effects on methylation/expression. One locus containing MUSTN1 and ITIH4 colocalized across all data types (GWAS, meQTL, and eQTL). In this first genome-wide meQTL map in the human NAc, the enriched overlap with smoking GWAS-identified genetic loci provides evidence that gene regulation in the brain helps explain the neurobiology of smoking behaviors.

7.
medRxiv ; 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38293028

RESUMO

Background: Alcohol use disorder (AUD) has a profound public health impact. However, understanding of the molecular mechanisms underlying the development and progression of AUD remain limited. Here, we interrogate AUD-associated DNA methylation (DNAm) changes within and across addiction-relevant brain regions: the nucleus accumbens (NAc) and dorsolateral prefrontal cortex (DLPFC). Methods: Illumina HumanMethylation EPIC array data from 119 decedents of European ancestry (61 cases, 58 controls) were analyzed using robust linear regression, with adjustment for technical and biological variables. Associations were characterized using integrative analyses of public gene regulatory data and published genetic and epigenetic studies. We additionally tested for brain region-shared and -specific associations using mixed effects modeling and assessed implications of these results using public gene expression data. Results: At a false discovery rate ≤ 0.05, we identified 53 CpGs significantly associated with AUD status for NAc and 31 CpGs for DLPFC. In a meta-analysis across the regions, we identified an additional 21 CpGs associated with AUD, for a total of 105 unique AUD-associated CpGs (120 genes). AUD-associated CpGs were enriched in histone marks that tag active promoters and our strongest signals were specific to a single brain region. Of the 120 genes, 23 overlapped with previous genetic associations for substance use behaviors; all others represent novel associations. Conclusions: Our findings identify AUD-associated methylation signals, the majority of which are specific within NAc or DLPFC. Some signals may constitute predisposing genetic and epigenetic variation, though more work is needed to further disentangle the neurobiological gene regulatory differences associated with AUD.

8.
Science ; 384(6698): eadh3707, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38781393

RESUMO

The molecular pathology of stress-related disorders remains elusive. Our brain multiregion, multiomic study of posttraumatic stress disorder (PTSD) and major depressive disorder (MDD) included the central nucleus of the amygdala, hippocampal dentate gyrus, and medial prefrontal cortex (mPFC). Genes and exons within the mPFC carried most disease signals replicated across two independent cohorts. Pathways pointed to immune function, neuronal and synaptic regulation, and stress hormones. Multiomic factor and gene network analyses provided the underlying genomic structure. Single nucleus RNA sequencing in dorsolateral PFC revealed dysregulated (stress-related) signals in neuronal and non-neuronal cell types. Analyses of brain-blood intersections in >50,000 UK Biobank participants were conducted along with fine-mapping of the results of PTSD and MDD genome-wide association studies to distinguish risk from disease processes. Our data suggest shared and distinct molecular pathology in both disorders and propose potential therapeutic targets and biomarkers.


Assuntos
Encéfalo , Transtorno Depressivo Maior , Loci Gênicos , Transtornos de Estresse Pós-Traumáticos , Feminino , Humanos , Masculino , Tonsila do Cerebelo/metabolismo , Biomarcadores/metabolismo , Encéfalo/metabolismo , Transtorno Depressivo Maior/genética , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Transtornos de Estresse Pós-Traumáticos/genética , Biologia de Sistemas , Análise da Expressão Gênica de Célula Única , Mapeamento Cromossômico
9.
Front Neurol ; 14: 1143882, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37404944

RESUMO

Introduction: We examined postmortem brain tissue from men, over the age of 50, for chronic traumatic encephalopathy neuropathologic change (CTE-NC). We hypothesized that (i) a small percentage would have CTE-NC, (ii) those who played American football during their youth would be more likely to have CTE-NC than those who did not play contact or collision sports, and (iii) there would be no association between CTE-NC and suicide as a manner of death. Methods: Brain tissue from 186 men and accompanying clinical information were obtained from the Lieber Institute for Brain Development. Manner of death was determined by a board-certified forensic pathologist. Information was obtained from next of kin telephone interviews, including medical, social, demographic, family, and psychiatric history. The 2016 and 2021 consensus definitions were used for CTE-NC. Two authors screened all cases, using liberal criteria for identifying "possible" CTE-NC, and five authors examined the 15 selected cases. Results: The median age at the time of death was 65 years (interquartile range = 57-75; range = 50-96). There were 25.8% with a history of playing American football and 36.0% who had suicide as their manner of death. No case was rated as definitively having "features" of CTE-NC by all five authors. Ten cases were rated as having features of CTE-NC by three or more authors (5.4% of the sample), including 8.3% of those with a personal history of playing American football and 3.9% of those who did not play contact or collision sports. Of those with mood disorders during life, 5.5% had features of CTE-NC compared to 6.0% of those who did not have a reported mood disorder. Of those with suicide as a manner of death, 6.0% had features of CTE-NC compared to 5.0% of those who did not have suicide as a manner of death. Discussion: We did not identify a single definitive case of CTE-NC, from the perspective of all raters, and only 5.4% of cases were identified as having possible features of CTE-NC by some raters. CTE-NC was very uncommon in men who played amateur American football, those with mood disorders during life, and those with suicide as a manner of death.

10.
medRxiv ; 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37790540

RESUMO

Smoking is a leading cause of preventable morbidity and mortality. Smoking is heritable, and genome-wide association studies (GWAS) of smoking behaviors have identified hundreds of significant loci. Most GWAS-identified variants are noncoding with unknown neurobiological effects. We used genome-wide genotype, DNA methylation, and RNA sequencing data in postmortem human nucleus accumbens (NAc) to identify cis-methylation/expression quantitative trait loci (meQTLs/eQTLs), investigate variant-by-cigarette smoking interactions across the genome, and overlay QTL evidence at smoking GWAS-identified loci to evaluate their regulatory potential. Active smokers (N=52) and nonsmokers (N=171) were defined based on cotinine biomarker levels and next-of-kin reporting. We simultaneously tested variant and variant-by-smoking interaction effects on methylation and expression, separately, adjusting for biological and technical covariates and using a two-stage multiple testing approach with eigenMT and Bonferroni corrections. We found >2 million significant meQTL variants (padj<0.05) corresponding to 41,695 unique CpGs. Results were largely driven by main effects; five meQTLs, mapping to NUDT12, FAM53B, RNF39, and ADRA1B, showed a significant interaction with smoking. We found 57,683 significant eQTLs for 958 unique eGenes (padj<0.05) and no smoking interactions. Colocalization analyses identified loci with smoking-associated GWAS variants that overlapped meQTLs/eQTLs, suggesting that these heritable factors may influence smoking behaviors through functional effects on methylation/expression. One locus containing MUSTIN1 and ITIH4 colocalized across all data types (GWAS + meQTL + eQTL). In this first genome-wide meQTL map in the human NAc, the enriched overlap with smoking GWAS-identified genetic loci provides evidence that gene regulation in the brain helps explain the neurobiology of smoking behaviors.

11.
Drug Alcohol Depend Rep ; 3: 100040, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36845993

RESUMO

Background: Although preclinical models reveal the neurobiological pathways altered through opioid abuse, comprehensive assessments of gene expression in human brain samples are needed. Moreover, less is known about gene expression in response to fatal overdose. The primary goal of the present study was to compare gene expression in the dorsolateral prefrontal cortex (DLPFC) between brain samples of individuals who died of acute opioid intoxication and group-matched controls. Methods: Postmortem tissue samples of the DLPFC from 153 deceased individuals (Mage  = 35.4; 62% male; 77% European ancestry). Study groups included 72 brain samples from individuals who died of acute opioid intoxication, 53 psychiatric controls, and 28 normal controls. Whole transcriptome RNA-sequencing was used to generate exon counts, and differential expression was tested using limma-voom. Analyses were adjusted for relevant sociodemographic characteristics, technical covariates, and cryptic relatedness using quality surrogate variables. Weighted correlation network analysis and gene set enrichment analyses also were conducted. Results: Two genes were differentially expressed in opioid samples compared to control samples. The top gene, NPAS4, was downregulated in opioid samples (log2FC = -2.47, adj. p = .049) and has been implicated in opioid, cocaine, and methamphetamine use. Weighted correlation network analysis revealed 15 gene modules associated with opioid overdose, though no intramodular hub genes were related to opioid overdose, nor were pathways related to opioid overdose enriched for differential expression. Conclusions: Results provide preliminary evidence that NPAS4 is implicated in opioid overdose, and more research is needed to understand its role in opioid abuse and associated outcomes.

12.
Am J Psychiatry ; 179(9): 673-686, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35791611

RESUMO

OBJECTIVE: Posttraumatic stress disorder (PTSD) is a debilitating neuropsychiatric disease that is highly comorbid with major depressive disorder (MDD) and bipolar disorder. The overlap in symptoms is hypothesized to stem from partially shared genetics and underlying neurobiological mechanisms. To delineate conservation between transcriptional patterns across PTSD and MDD, the authors examined gene expression in the human cortex and amygdala in these disorders. METHODS: RNA sequencing was performed in the postmortem brain of two prefrontal cortex regions and two amygdala regions from donors diagnosed with PTSD (N=107) or MDD (N=109) as well as from neurotypical donors (N=109). RESULTS: The authors identified a limited number of differentially expressed genes (DEGs) specific to PTSD, with nearly all mapping to cortical versus amygdala regions. PTSD-specific DEGs were enriched in gene sets associated with downregulated immune-related pathways and microglia as well as with subpopulations of GABAergic inhibitory neurons. While a greater number of DEGs associated with MDD were identified, most overlapped with PTSD, and only a few were MDD specific. The authors used weighted gene coexpression network analysis as an orthogonal approach to confirm the observed cellular and molecular associations. CONCLUSIONS: These findings provide supporting evidence for involvement of decreased immune signaling and neuroinflammation in MDD and PTSD pathophysiology, and extend evidence that GABAergic neurons have functional significance in PTSD.


Assuntos
Transtorno Depressivo Maior , Transtornos de Estresse Pós-Traumáticos , Tonsila do Cerebelo , Transtorno Depressivo Maior/psicologia , Humanos , Córtex Pré-Frontal , Transtornos de Estresse Pós-Traumáticos/psicologia , Transcriptoma/genética
13.
Nat Neurosci ; 25(11): 1559-1568, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36319771

RESUMO

Most studies of gene expression in the brains of individuals with schizophrenia have focused on cortical regions, but subcortical nuclei such as the striatum are prominently implicated in the disease, and current antipsychotic drugs target the striatum's dense dopaminergic innervation. Here, we performed a comprehensive analysis of the genetic and transcriptional landscape of schizophrenia in the postmortem caudate nucleus of the striatum of 443 individuals (245 neurotypical individuals, 154 individuals with schizophrenia and 44 individuals with bipolar disorder), 210 from African and 233 from European ancestries. Integrating expression quantitative trait loci analysis, Mendelian randomization with the latest schizophrenia genome-wide association study, transcriptome-wide association study and differential expression analysis, we identified many genes associated with schizophrenia risk, including potentially the dopamine D2 receptor short isoform. We found that antipsychotic medication has an extensive influence on caudate gene expression. We constructed caudate nucleus gene expression networks that highlight interactions involving schizophrenia risk. These analyses provide a resource for the study of schizophrenia and insights into risk mechanisms and potential therapeutic targets.


Assuntos
Antipsicóticos , Esquizofrenia , Humanos , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Esquizofrenia/tratamento farmacológico , Esquizofrenia/genética , Esquizofrenia/metabolismo , Núcleo Caudado , Estudo de Associação Genômica Ampla , Transcriptoma
14.
Brain ; 133(10): 3113-22, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20639549

RESUMO

Higher rates of non-right-handedness (i.e. left- and mixed-handedness) have been reported in schizophrenia and have been a centrepiece for theories of anomalous lateralization in this disorder. We investigated whether non-right-handedness is (i) more prevalent in patients as compared with unaffected siblings and healthy unrelated control participants; (ii) familial; (iii) associated with disproportionately poorer neurocognition; and (iv) associated with grey matter volume asymmetries. We examined 1445 participants (375 patients with schizophrenia, 502 unaffected siblings and 568 unrelated controls) using the Edinburgh Handedness Inventory, a battery of neuropsychological tasks and structural magnetic resonance imaging data. Patients displayed a leftward shift in Edinburgh Handedness Inventory laterality quotient scores as compared with both their unaffected siblings and unrelated controls, but this finding disappeared when sex was added to the model. Moreover, there was no evidence of increased familial risk for non-right-handedness. Non-right-handedness was not associated with disproportionate neurocognitive disadvantage or with grey matter volume asymmetries in the frontal pole, lateral occipital pole or temporal pole. Non-right-handedness was associated with a significant reduction in left asymmetry in the superior temporal gyrus in both patients and controls. Our data neither provide strong support for 'atypical' handedness as a schizophrenia risk-associated heritable phenotype nor that it is associated with poorer neurocognition or anomalous cerebral asymmetries.


Assuntos
Encéfalo/fisiopatologia , Cognição , Lateralidade Funcional , Esquizofrenia/fisiopatologia , Adulto , Análise de Variância , Distribuição de Qui-Quadrado , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Testes Neuropsicológicos
15.
Front Neurol ; 12: 745824, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899570

RESUMO

Introduction: It is reasonable to estimate that tens of millions of men in the United States played high school football. There is societal concern that participation in football confers risk for later-in-life mental health problems. The purpose of this study is to examine whether there is an association between a personal history of playing high school football and death by suicide. Methods: The subjects were obtained from the Lieber Institute for Brain Development (LIBD) brain donation program in collaboration with the Office of the Medical Examiner at Western Michigan University Homer Stryker MD School of Medicine. Donor history was documented via medical records, mental health records, and telephone interviews with the next-of-kin. Results: The sample included 198 men aged 50 or older (median = 65.0 years, interquartile range = 57-75). There were 34.8% who participated in contact sports during high school (including football), and 29.8% participated in high school football. Approximately one-third of the sample had suicide as their manner of death (34.8%). There was no statistically significant difference in the proportions of suicide as a manner of death among those men with a personal history of playing football compared to men who did not play football or who did not play sports (p = 0.070, Odds Ratio, OR = 0.537). Those who played football were significantly less likely to have a lifetime history of a suicide attempt (p = 0.012, OR = 0.352). Men with mood disorders (p < 0.001, OR = 10.712), substance use disorders (p < 0.020, OR = 2.075), and those with a history of suicide ideation (p < 0.001, OR = 8.038) or attempts (p < 0.001, OR = 40.634) were more likely to have suicide as a manner of death. Moreover, those men with a family history of suicide were more likely to have prior suicide attempts (p = 0.031, OR = 2.153) and to have completed suicide (p = 0.001, OR = 2.927). Discussion: Suicide was related to well-established risk factors such as a personal history of a mood disorder, substance abuse disorder, prior suicide ideation, suicide attempts, and a family history of suicide attempts. This study adds to a steadily growing body of evidence suggesting that playing high school football is not associated with increased risk for suicidality or suicide during adulthood.

16.
Drug Alcohol Depend ; 221: 108658, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33667780

RESUMO

BACKGROUND: Opioid abuse poses significant risk to individuals in the United States and epigenetic changes are a leading potential biomarker of opioid abuse. Current evidence, however, is mostly limited to candidate gene analysis in whole blood. To clarify the association between opioid abuse and DNA methylation, we conducted an epigenome-wide analysis of DNA methylation in brain samples of individuals who died from acute opioid intoxication and group-matched controls. METHODS: Tissue samples were extracted from the dorsolateral prefrontal cortex of 153 deceased individuals (Mage = 35.42; 62 % male; 77 % European ancestry). The study included 72 opioid samples, 53 psychiatric controls, and 28 normal controls. The epigenome-wide analysis was implemented using the Illumina MethylationEPIC BeadChip; analyses adjusted for sociodemographic characteristics, negative control principal components, ancestry principal components, cellular composition, and surrogate variables. Horvath's epigenetic age and Levine's PhenoAge were calculated, and gene set enrichment analyses were performed. RESULTS: Although no CpG sites survived false-discovery rate correction for multiple testing, 13 sites surpassed a relaxed significance threshold (p < 1.0 × 10-5). One of these sites was located within Netrin-1, a gene implicated in kappa opioid receptor activity. There was an association between opioid use and accelerated PhenoAge (b = 2.24, se = 1.11, p = .045). Gene set enrichment analyses revealed enrichment of differential methylation in GO and KEGG pathways broadly related to substance use. CONCLUSIONS: Netrin-1 may be associated with opioid overdose, and future research with larger samples across stages of opioid use will elucidate the complex genomics of opioid abuse.


Assuntos
Analgésicos Opioides/efeitos adversos , Encéfalo/metabolismo , Metilação de DNA/fisiologia , Epigenoma/fisiologia , Transtornos Relacionados ao Uso de Opioides/metabolismo , Adulto , Biomarcadores/metabolismo , Encéfalo/patologia , Epigênese Genética/fisiologia , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Transtornos Relacionados ao Uso de Opioides/genética , Transtornos Relacionados ao Uso de Opioides/patologia
17.
Neuropsychopharmacology ; 46(3): 554-560, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32731254

RESUMO

Numerous DNA methylation (DNAm) biomarkers of cigarette smoking have been identified in peripheral blood studies, but because of tissue specificity, blood-based studies may not detect brain-specific smoking-related DNAm differences that may provide greater insight as neurobiological indicators of smoking and its exposure effects. We report the first epigenome-wide association study (EWAS) of smoking in human postmortem brain, focusing on nucleus accumbens (NAc) as a key brain region in developing and reinforcing addiction. Illumina HumanMethylation EPIC array data from 221 decedents (120 European American [23% current smokers], 101 African American [26% current smokers]) were analyzed. DNAm by smoking (current vs. nonsmoking) was tested within each ancestry group using robust linear regression models adjusted for age, sex, cell-type proportion, DNAm-derived negative control principal components (PCs), and genotype-derived PCs. The resulting ancestry-specific results were combined via meta-analysis. We extended our NAc findings, using published smoking EWAS results in blood, to identify DNAm smoking effects that are unique (tissue-specific) vs. shared between tissues (tissue-shared). We identified seven CpGs (false discovery rate < 0.05), of which three CpGs are located near genes previously indicated with blood-based smoking DNAm biomarkers: ZIC1, ZCCHC24, and PRKDC. The other four CpGs are novel for smoking-related DNAm changes: ABLIM3, APCDD1L, MTMR6, and CTCF. None of the seven smoking-related CpGs in NAc are driven by genetic variants that share association signals with predisposing genetic risk variants for smoking, suggesting that the DNAm changes reflect consequences of smoking. Our results provide the first evidence for smoking-related DNAm changes in human NAc, highlighting CpGs that were undetected as peripheral biomarkers and may reflect brain-specific responses to smoking exposure.


Assuntos
Metilação de DNA , Epigênese Genética , Estudo de Associação Genômica Ampla , Humanos , não Fumantes , Núcleo Accumbens , Fumantes , Fumar/genética
18.
Transl Psychiatry ; 10(1): 158, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32433545

RESUMO

Beyond being one the most widely used psychoactive drugs in the world, cannabis has been identified as an environmental risk factor for psychosis. Though the relationship between cannabis use and psychiatric disorders remains controversial, consistent association between early adolescent cannabis use and the subsequent risk of psychosis suggested adolescence may be a particularly vulnerable period. Previous findings on gene by environment interactions indicated that cannabis use may only increase the risk for psychosis in the subjects who have a specific genetic vulnerability. The type 1 cannabinoid receptor (CB1), encoded by the CNR1 gene, is a key component of the endocannabinoid system. As the primary endocannabinoid receptor in the brain, CB1 is the main molecular target of the endocannabinoid ligand, as well as tetrahydrocannabinol (THC), the principal psychoactive ingredient of cannabis. In this study, we have examined mRNA expression and DNA methylation of CNR1 in human prefrontal cortex (PFC), hippocampus, and caudate samples. The expression of CNR1 is higher in fetal PFC and hippocampus, then drops down dramatically after birth. The lifespan trajectory of CNR1 expression in the DLPFC differentially correlated with age by allelic variation at rs4680, a functional polymorphism in the COMT gene. Compared with COMT methionine158 carriers, Caucasian carriers of the COMT valine158 allele have a stronger negative correlation between the expression of CNR1 in DLPFC and age. In contrast, the methylation level of cg02498983, which is negatively correlated with the expression of CNR1 in PFC, showed the strongest positive correlation with age in PFC of Caucasian carriers of COMT valine158. Additionally, we have observed decreased mRNA expression of CNR1 in the DLPFC of patients with schizophrenia. Further analysis revealed a positive eQTL SNP, rs806368, which predicted the expression of a novel transcript of CNR1 in human DLPFC, hippocampus and caudate. This SNP has been associated with addiction and other psychiatric disorders. THC or ethanol are each significantly associated with dysregulated expression of CNR1 in the PFC of patients with affective disorder, and the expression of CNR1 is significantly upregulated in the PFC of schizophrenia patients who completed suicide. Our results support previous studies that have implicated the endocannabinoid system in the pathology of schizophrenia and provided additional insight into the mechanism of increasing risk for schizophrenia in the adolescent cannabis users.


Assuntos
Canabinoides , Esquizofrenia , Adolescente , Encéfalo , Metilação de DNA , Hipocampo , Humanos , Polimorfismo de Nucleotídeo Único , Córtex Pré-Frontal , Receptor CB1 de Canabinoide/genética , Receptores de Canabinoides , Esquizofrenia/genética
19.
Nat Neurosci ; 23(4): 510-519, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32203495

RESUMO

Specific cell populations may have unique contributions to schizophrenia but may be missed in studies of homogenate tissue. Here laser capture microdissection followed by RNA sequencing (LCM-seq) was used to transcriptomically profile the granule cell layer of the dentate gyrus (DG-GCL) in human hippocampus and contrast these data to those obtained from bulk hippocampal homogenate. We identified widespread cell-type-enriched aging and genetic effects in the DG-GCL that were either absent or directionally discordant in bulk hippocampus data. Of the ~9 million expression quantitative trait loci identified in the DG-GCL, 15% were not detected in bulk hippocampus, including 15 schizophrenia risk variants. We created transcriptome-wide association study genetic weights from the DG-GCL, which identified many schizophrenia-associated genetic signals not found in transcriptome-wide association studies from bulk hippocampus, including GRM3 and CACNA1C. These results highlight the improved biological resolution provided by targeted sampling strategies like LCM and complement homogenate and single-nucleus approaches in human brain.


Assuntos
Giro Denteado/metabolismo , Predisposição Genética para Doença , Neurônios/metabolismo , Esquizofrenia/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento , Transtorno Bipolar/genética , Transtorno Bipolar/metabolismo , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/metabolismo , Feminino , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Locos de Características Quantitativas , Esquizofrenia/metabolismo , Transcriptoma , Adulto Jovem
20.
Brain ; 131(Pt 9): 2489-98, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18669483

RESUMO

There is comparatively little information about premorbid maturational brain abnormalities in schizophrenia (SCZ). We investigated whether a history of childhood enuresis, a well-established marker of neurodevelopmental delay, is associated with SCZ and with measures of brain abnormalities also associated with SCZ. A Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) based history of enuresis, volumetric brain MRI scans and neuropsychological testing were obtained in patients with SCZ, their non-psychotic siblings (SIB) and non-psychiatric controls (NC). The subjects were 211 patients (79.6% male), 234 of their SIB (43.2% male) and 355 controls (39.2% male). Frequency of enuresis was compared across groups and correlated with cognitive measures. Total and regional brain volumes were determined using voxel-based morphometry on matched subsets of probands (n = 82) with or without enuresis (n = 16, n = 66, respectively) and controls (n = 102) with or without enuresis (n = 11, n = 91, respectively). Patients with SCZ had higher rates of childhood enuresis (21%) compared with SIB (11%; chi(2) = 6.42, P = 0.01) or controls (7%; chi(2) = 23.65, P < 0.0001) and relative risk for enuresis was increased in SIB (lambda(S) = 2.62). Patients with enuresis performed worse on two frontal lobe cognitive tests [Letter Fluency (t = 1.97, P = 0.05, df = 200) and Category Fluency (t = 2.15, P = 0.03, df = 200)] as compared with non-enuretic patients. Voxel-based morphometry analysis revealed grey matter volume reductions in several frontal regions (right BA 9, right BA 10 and bilateral BA 45) and right superior parietal cortex (BA 7) in patients with a history of enuresis as compared with non-enuretic patients (all t > 3.57, all P < 0.001). The high frequency of childhood enuresis associated with SCZ and abnormalities in prefrontal function and structure in patients with a childhood history of enuresis suggest that childhood enuresis may be a premorbid marker for neurodevelopmental abnormalities related to SCZ. These findings add to the evidence implicating prefrontal dysmaturation in this disorder, potentially related to genetic risk factors.


Assuntos
Enurese/complicações , Esquizofrenia/complicações , Adolescente , Adulto , Encéfalo/patologia , Mapeamento Encefálico/métodos , Estudos de Coortes , Manual Diagnóstico e Estatístico de Transtornos Mentais , Enurese/patologia , Enurese/fisiopatologia , Enurese/psicologia , Feminino , Lobo Frontal/patologia , Lobo Frontal/fisiopatologia , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Esquizofrenia/patologia , Esquizofrenia/fisiopatologia , Psicologia do Esquizofrênico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA