Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 566(7744): 344-349, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30700907

RESUMO

Fibroblasts are polymorphic cells with pleiotropic roles in organ morphogenesis, tissue homeostasis and immune responses. In fibrotic diseases, fibroblasts synthesize abundant amounts of extracellular matrix, which induces scarring and organ failure. By contrast, a hallmark feature of fibroblasts in arthritis is degradation of the extracellular matrix because of the release of metalloproteinases and degrading enzymes, and subsequent tissue destruction. The mechanisms that drive these functionally opposing pro-fibrotic and pro-inflammatory phenotypes of fibroblasts remain unknown. Here we identify the transcription factor PU.1 as an essential regulator of the pro-fibrotic gene expression program. The interplay between transcriptional and post-transcriptional mechanisms that normally control the expression of PU.1 expression is perturbed in various fibrotic diseases, resulting in the upregulation of PU.1, induction of fibrosis-associated gene sets and a phenotypic switch in extracellular matrix-producing pro-fibrotic fibroblasts. By contrast, pharmacological and genetic inactivation of PU.1 disrupts the fibrotic network and enables reprogramming of fibrotic fibroblasts into resting fibroblasts, leading to regression of fibrosis in several organs.


Assuntos
Diferenciação Celular/genética , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose/genética , Fibrose/patologia , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/metabolismo , Animais , Sequência de Bases , Epigênese Genética , Feminino , Humanos , Inflamação/genética , Inflamação/patologia , Masculino , Camundongos , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Transativadores/antagonistas & inibidores
2.
Blood ; 137(17): 2403-2416, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33529322

RESUMO

Chronic graft-versus-host disease (cGVHD) is a major life-threatening complication of allogeneic hematopoietic stem cell transplantation. The molecular mechanisms underlying cGVHD remain poorly understood, and targeted therapies for clinical use are not well established. Here, we examined the role of the canonical WNT pathway in sclerodermatous cGVHD (sclGVHD). WNT signaling was activated in human sclGVHD with increased nuclear accumulation of the transcription factor ß-catenin and a WNT-biased gene expression signature in lesional skin. Treatment with the highly selective tankryase inhibitor G007-LK, the CK1α agonist pyrvinium, or the LRP6 inhibitor salinomycin abrogated the activation of WNT signaling and protected against experimental cGVHD, without a significant impact on graft-versus-leukemia effect (GVL). Treatment with G007-LK, pyrvinium, or salinomycin almost completely prevented the development of clinical and histological features in the B10.D2 (H-2d) → BALB/c (H-2d) and LP/J (H-2b) → C57BL/6 (H-2b) models of sclGVHD. Inhibition of canonical WNT signaling reduced the release of extracellular matrix from fibroblasts and reduced leukocyte influx, suggesting that WNT signaling stimulates fibrotic tissue remodeling by direct effects on fibroblasts and by indirect inflammation-dependent effects in sclGVHD. Our findings may have direct translational potential, because pyrvinium is in clinical use, and tankyrase inhibitors are in clinical trials for other indications.


Assuntos
Doença Enxerto-Hospedeiro/prevenção & controle , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Piranos/farmacologia , Compostos de Pirvínio/farmacologia , Escleroderma Sistêmico/prevenção & controle , Sulfonas/farmacologia , Triazóis/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/metabolismo , Doença Enxerto-Hospedeiro/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Escleroderma Sistêmico/etiologia , Escleroderma Sistêmico/metabolismo , Escleroderma Sistêmico/patologia
3.
Eur J Nucl Med Mol Imaging ; 50(6): 1629-1635, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36522438

RESUMO

PURPOSE: Myocardial fibrosis (MF) is a factor of poor prognosis in systemic sclerosis (SSc). Direct in-vivo visualization of fibroblast activation as early readout of MF has not been feasible to date. Here, we characterize 68Gallium-labeled-Fibroblast-Activation-Inhibitor-04 ([68Ga]Ga-FAPI-04)-PET-CT as a diagnostic tool in SSc-related MF. METHODS: In this proof-of-concept trial, six SSc patients with and eight without MF of the EUSTAR cohort Erlangen underwent [68Ga]Ga-FAPI-04-PET-CT and cardiac MRI (cMRI) and clinical and serologic investigations just before baseline and during follow-up between January 2020 and December 2020. Myocardial biopsy was performed as clinically indicated. RESULTS: [68Ga]Ga-FAPI-04 tracer uptake was increased in SSc-related MF with higher uptake in SSc patients with arrhythmias, elevated serum-NT-pro-BNP, and increased late gadolinium enhancement (LGE) in cMRI. Histologically, myocardial biopsies from cMRI- and [68Ga]Ga-FAPI-04-positive regions confirmed the accumulation of FAP+ fibroblasts surrounded by collagen deposits. We observed similar but not equal spatial distributions of [68Ga]Ga-FAPI-04 uptake and quantitative cMRI-based techniques. Using sequential [68Ga]Ga-FAPI-04-PET-CTs, we observed dynamic changes of [68Ga]Ga-FAPI-04 uptake associated with changes in the activity of SSc-related MF, while cMRI parameters remained stable after regression of molecular activity and rather indicated tissue damage. CONCLUSIONS: We present first in-human evidence that [68Ga]Ga-FAPI-04 uptake visualizes fibroblast activation in SSc-related MF and may be a diagnostic option to monitor cardiac fibroblast activity in situ.


Assuntos
Radioisótopos de Gálio , Escleroderma Sistêmico , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Meios de Contraste , Gadolínio , Escleroderma Sistêmico/complicações , Escleroderma Sistêmico/diagnóstico por imagem , Fibrose
4.
Ann Rheum Dis ; 80(8): 1048-1056, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33903093

RESUMO

OBJECTIVE: X-linked inhibitor of apoptosis protein (XIAP) is a multifunctional protein with important functions in apoptosis, cellular differentiation and cytoskeletal organisation and is emerging as potential target for the treatment of various cancers. The aim of the current study was to investigate the role of XIAP in the pathogenesis of systemic sclerosis (SSc). METHODS: The expression of XIAP in human skin samples of patients with SSc and chronic graft versus host disease (cGvHD) and healthy individuals was analysed by quantitative PCR, immunofluorescence (IF) and western blot. XIAP was inactivated by siRNA-mediated knockdown and pharmacological inhibition. The effects of XIAP inactivation were analysed in cultured fibroblasts and in the fibrosis models bleomycin-induced and topoisomerase-I-(topoI)-induced fibrosis and in Wnt10b-transgenic mice. RESULTS: The expression of XIAP, but not of other inhibitor of apoptosis protein family members, was increased in fibroblasts in SSc and sclerodermatous cGvHD. Transforming growth factor beta (TGF-ß) induced the expression of XIAP in a SMAD3-dependent manner. Inactivation of XIAP reduced WNT-induced fibroblast activation and collagen release. Inhibition of XIAP also ameliorated fibrosis induced by bleomycin, topoI and overexpression of Wnt10b in well-tolerated doses. The profibrotic effects of XIAP were mediated via WNT/ß-catenin signalling. Inactivation of XIAP reduces binding of ß-catenin to TCF to in a TLE-dependent manner to block WNT/ß-catenin-dependent transcription. CONCLUSIONS: Our data characterise XIAP as a novel link between two core pathways of fibrosis. XIAP is overexpressed in SSc and cGvHD in a TGF-ß/SMAD3-dependent manner and in turn amplifies the profibrotic effects of WNT/ß-catenin signalling on fibroblasts via transducin-like enhancer of split 3. Targeted inactivation of XIAP inhibits the aberrant activation of fibroblasts in murine models of SSc.


Assuntos
Escleroderma Sistêmico , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , beta Catenina , Animais , Bleomicina/farmacologia , Modelos Animais de Doenças , Fibroblastos/metabolismo , Fibrose , Humanos , Camundongos , Escleroderma Sistêmico/patologia , Pele/patologia , Fator de Crescimento Transformador beta/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/antagonistas & inibidores , beta Catenina/metabolismo
5.
Exp Dermatol ; 30(1): 121-131, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32931037

RESUMO

The activation of fibroblasts is required for physiological tissue remodelling such as wound healing. However, when the regulatory mechanisms are disrupted and fibroblasts remain persistently activated, the progressive deposition of extracellular matrix proteins leads to tissue fibrosis, which results in dysfunction or even loss of function of the affected organ. Although fibrosis has been recognized as a major cause of morbidity and mortality in modern societies, there are only few treatment options available that directly disrupt the release of extracellular matrix from fibroblasts. Intensive research in recent years, however, identified several pathways as core fibrotic mechanisms that are shared across different fibrotic diseases and organs. We discuss herein selection of those core pathways, especially downstream of the profibrotic TGF-ß pathway, which are druggable and which may be transferable from bench to bedside.


Assuntos
Fibrose/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Escleroderma Sistêmico/metabolismo , Transdução de Sinais , Pele/patologia , Fator de Crescimento Transformador beta/metabolismo , Animais , Metilação de DNA , Efrinas/metabolismo , Fator 9 de Crescimento de Fibroblastos/metabolismo , Fibrose/genética , Fibrose/patologia , Guanilato Ciclase/metabolismo , Código das Histonas , Humanos , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/patologia , Janus Quinases/metabolismo , Miofibroblastos , Receptores Citoplasmáticos e Nucleares/metabolismo , Fatores de Transcrição STAT/metabolismo , Escleroderma Sistêmico/genética , Escleroderma Sistêmico/patologia , Serotonina/metabolismo
6.
Ann Rheum Dis ; 79(9): 1227-1233, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32482644

RESUMO

OBJECTIVES: Coactivators are a heterogeneous family of transcriptional regulators that are essential for modulation of transcriptional outcomes and fine-tune numerous cellular processes. The aim of the present study was to evaluate the role of the coactivator peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) in the pathogenesis of systemic sclerosis (SSc). METHODS: Expression of PGC-1α was analysed by real-time PCR, western blot and immunofluorescence. Modulation of autophagy was analysed by reporter studies by expression of autophagy-related genes. The effects of PGC-1α knockdown on collagen production and myofibroblast differentiation were analysed in cultured human fibroblasts and in two mouse models with fibroblast-specific knockout of PGC-1α. RESULTS: The expression of PGC-1α was induced in dermal fibroblasts of patients with SSc and experimental murine fibrosis. Transforming growth factor beta (TGFß), hypoxia and epigenetic mechanisms regulate the expression of PGC-1α in fibroblasts. Knockdown of PGC-1α prevented the activation of autophagy by TGFß and this translated into reduced fibroblast-to-myofibroblast differentiation and collagen release. Knockout of PGC-1α in fibroblasts prevented skin fibrosis induced by bleomycin and by overexpression of a constitutively active TGFß receptor type I. Moreover, pharmacological inhibition of PGC-1α by SR18292 induced regression of pre-established, bleomycin-induced skin fibrosis. CONCLUSION: PGC-1α is upregulated in SSc and promotes autophagy to foster TGFß-induced fibroblast activation. Targeting of PGC-1α prevents aberrant autophagy, inhibits fibroblast activation and tissue fibrosis and may over therapeutic potential.


Assuntos
Autofagia/genética , Fibroblastos/fisiologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/fisiologia , Escleroderma Sistêmico/genética , Escleroderma Sistêmico/patologia , Animais , Bleomicina/farmacologia , Western Blotting , Colágeno/biossíntese , Modelos Animais de Doenças , Fibrose , Imunofluorescência , Humanos , Camundongos , Reação em Cadeia da Polimerase , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo , Regulação para Cima
7.
Ann Rheum Dis ; 78(9): 1269-1273, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31177096

RESUMO

OBJECTIVES: Systemic sclerosis (SSc) is characterised by aberrant hedgehog signalling in fibrotic tissues. The hedgehog acyltransferase (HHAT) skinny hedgehog catalyses the attachment of palmitate onto sonic hedgehog (SHH). Palmitoylation of SHH is required for multimerisation of SHH proteins, which is thought to promote long-range, endocrine hedgehog signalling. The aim of this study was to evaluate the role of HHAT in the pathogenesis of SSc. METHODS: Expression of HHAT was analysed by real-time polymerase chain reaction(RT-PCR), immunofluorescence and histomorphometry. The effects of HHAT knockdown were analysed by reporter assays, target gene studies and quantification of collagen release and myofibroblast differentiation in cultured human fibroblasts and in two mouse models. RESULTS: The expression of HHAT was upregulated in dermal fibroblasts of patients with SSc in a transforming growth factor-ß (TGFß)/SMAD-dependent manner. Knockdown of HHAT reduced TGFß-induced hedgehog signalling as well as myofibroblast differentiation and collagen release in human dermal fibroblasts. Knockdown of HHAT in the skin of mice ameliorated bleomycin-induced and topoisomerase-induced skin fibrosis. CONCLUSION: HHAT is regulated in SSc in a TGFß-dependent manner and in turn stimulates TGFß-induced long-range hedgehog signalling to promote fibroblast activation and tissue fibrosis. Targeting of HHAT might be a novel approach to more selectively interfere with the profibrotic effects of long-range hedgehog signalling.


Assuntos
Aciltransferases/genética , Regulação da Expressão Gênica , RNA/genética , Escleroderma Sistêmico/genética , Pele/patologia , Fator de Crescimento Transformador beta/metabolismo , Aciltransferases/biossíntese , Adulto , Idoso , Animais , Western Blotting , Diferenciação Celular , Células Cultivadas , Modelos Animais de Doenças , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Escleroderma Sistêmico/metabolismo , Escleroderma Sistêmico/patologia , Transdução de Sinais , Pele/metabolismo , Adulto Jovem
8.
Ann Rheum Dis ; 77(5): 744-751, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29431122

RESUMO

OBJECTIVES: The enzyme poly(ADP-ribose) polymerase-1 (PARP-1) transfers negatively charged ADP-ribose units to target proteins. This modification can have pronounced regulatory effects on target proteins. Recent studies showed that PARP-1 can poly(ADP-ribosyl)ate (PARylate) Smad proteins. However, the role of PARP-1 in the pathogenesis of systemic sclerosis (SSc) has not been investigated. METHODS: The expression of PARP-1 was determined by quantitative PCR and immunohistochemistry. DNA methylation was analysed by methylated DNA immunoprecipitation assays. Transforming growth factor-ß (TGFß) signalling was assessed using reporter assays, chromatin immunoprecipitation assays and target gene analysis. The effect of PARP-1 inactivation was investigated in bleomycin-induced and topoisomerase-induced fibrosis as well as in tight-skin-1 (Tsk-1) mice. RESULTS: The expression of PARP-1 was decreased in patients with SSc, particularly in fibroblasts. The promoter of PARP-1 was hypermethylated in SSc fibroblasts and in TGFß-stimulated normal fibroblasts. Inhibition of DNA methyltransferases (DNMTs) reduced the promoter methylation and reactivated the expression of PARP-1. Inactivation of PARP-1 promoted accumulation of phosphorylated Smad3, enhanced Smad-dependent transcription and upregulated the expression of TGFß/Smad target genes. Inhibition of PARP-1 enhanced the effect of TGFß on collagen release and myofibroblast differentiation in vitro and exacerbated experimental fibrosis in vivo. PARP-1 deficiency induced a more severe fibrotic response to bleomycin with increased dermal thickening, hydroxyproline content and myofibroblast counts. Inhibition of PARylation also exacerbated fibrosis in Tsk-1 mice and in mice with topoisomerase-induced fibrosis. CONCLUSION: PARP-1 negatively regulates canonical TGFß signalling in experimental skin fibrosis. The downregulation of PARP-1 in SSc fibroblasts may thus directly contribute to hyperactive TGFß signalling and to persistent fibroblast activation in SSc.


Assuntos
Fibroblastos/fisiologia , Fibrose/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Escleroderma Sistêmico/genética , Dermatopatias/genética , Adulto , Idoso , Animais , Metilação de DNA/genética , Modelos Animais de Doenças , Regulação para Baixo/genética , Feminino , Fibrose/induzido quimicamente , Fibrose/enzimologia , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Proteínas Serina-Treonina Quinases , Escleroderma Sistêmico/enzimologia , Transdução de Sinais , Pele/metabolismo , Pele/patologia , Dermatopatias/enzimologia , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Adulto Jovem
9.
Ann Rheum Dis ; 77(3): 459, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29311148

RESUMO

OBJECTIVES: Stimulators of soluble guanylate cyclase (sGC) are currently investigated in clinical trials for the treatment of fibrosis in systemic sclerosis (SSc). In this study, we aim to investigate the role of protein kinases G (PKG) as downstream mediators of sGC-cyclic guanosine monophosphate (cGMP) in SSc. METHODS: Mice with combined knockout of PKG1 and 2 were challenged with bleomycin and treated with the sGC stimulator BAY 41-2272. Fibroblasts were treated with BAY 41-2272 and with the PKG inhibitor KT 5823. RESULTS: PKG1 and 2 are upregulated in SSc in a transforming growth factor-ß1 (TGFß1)-dependent manner, as an attempt to compensate for the decreased signalling through the sGC-cGMP-PKG pathway. Inhibition or knockout of PKG1 and 2 abrogates the inhibitory effects of sGC stimulation on fibroblast activation in a SMAD-independent, but extracellular signal-regulated kinase (ERK)-dependent manner. In vivo, sGC stimulation fails to prevent bleomycin-induced fibrosis in PKG1 and 2 knockout mice. CONCLUSIONS: Our data provide evidence that PKGs are essential mediators of the antifibrotic effects of sGC stimulators through interfering with non-canonical TGFß signalling. TGFß1 promotes its profibrotic effects through inhibition of sGC-cGMP-PKG signalling, sGC stimulation exerts its antifibrotic effects by inhibition of TGFß1-induced ERK phosphorylation.


Assuntos
Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Fibroblastos/metabolismo , Escleroderma Sistêmico/metabolismo , Guanilil Ciclase Solúvel/metabolismo , Adulto , Idoso , Animais , Bleomicina/farmacologia , Western Blotting , Carbazóis/farmacologia , Técnicas de Cultura de Células , Feminino , Fibroblastos/efeitos dos fármacos , Fibrose/metabolismo , Imunofluorescência , Humanos , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Pirazóis/farmacologia , Piridinas/farmacologia , Reação em Cadeia da Polimerase em Tempo Real , Escleroderma Sistêmico/patologia , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo
10.
Ann Rheum Dis ; 77(1): 150-158, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29070530

RESUMO

OBJECTIVES: Systemic sclerosis (SSc) fibroblasts remain activated even in the absence of exogenous stimuli. Epigenetic alterations are thought to play a role for this endogenous activation. Trimethylation of histone H3 on lysine 27 (H3K27me3) is regulated by Jumonji domain-containing protein 3 (JMJD3) and ubiquitously transcribed tetratricopeptide repeat on chromosome X (UTX) in a therapeutically targetable manner. The aim of this study was to explore H3K27me3 demethylases as potential targets for the treatment of fibrosis. METHODS: JMJD3 was inactivated by small interfering RNA-mediated knockdown and by pharmacological inhibition with GSKJ4. The effects of targeted inactivation of JMJD3 were analysed in cultured fibroblasts and in the murine models of bleomycin-induced and topoisomerase-I (topoI)-induced fibrosis. H3K27me3 at the FRA2 promoter was analysed by ChIP. RESULTS: The expression of JMJD3, but not of UTX, was increased in fibroblasts in SSc skin and in experimental fibrosis in a transforming growth factor beta (TGFß)-dependent manner. Inactivation of JMJD3 reversed the activated fibroblast phenotype in SSc fibroblasts and prevented the activation of healthy dermal fibroblasts by TGFß. Pharmacological inhibition of JMJD3 ameliorated bleomycin-induced and topoI-induced fibrosis in well-tolerated doses. JMJD3 regulated fibroblast activation in a FRA2-dependent manner: Inactivation of JMJD3 reduced the expression of FRA2 by inducing accumulation of H3K27me3 at the FRA2 promoter. Moreover, the antifibrotic effects of JMJD3 inhibition were reduced on knockdown of FRA2. CONCLUSION: We present first evidence for a deregulation of JMJD3 in SSc. JMJD3 modulates fibroblast activation by regulating the levels of H3K27me3 at the promoter of FRA2. Targeted inhibition of JMJD3 limits the aberrant activation of SSc fibroblasts and exerts antifibrotic effects in two murine models.


Assuntos
Fibroblastos/enzimologia , Histona Desmetilases com o Domínio Jumonji/metabolismo , Escleroderma Sistêmico/enzimologia , Adulto , Idoso , Animais , Bleomicina , Estudos de Casos e Controles , Células Cultivadas , Ativação Enzimática , Feminino , Fibrose/induzido quimicamente , Fibrose/enzimologia , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Adulto Jovem
11.
Ann Rheum Dis ; 76(11): 1941-1948, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28814429

RESUMO

BACKGROUND: Nintedanib is an inhibitor targeting platelet-derived growth factor receptor, fibroblast growth factor receptor and vascular endothelial growth factor receptor tyrosine kinases that has recently been approved for the treatment of idiopathic pulmonary fibrosis. The aim of this study was to analyse the effects of nintedanib in the fos-related antigen-2 (Fra2) mouse model of systemic sclerosis (SSc). METHODS: The effects of nintedanib on pulmonary arterial hypertension with proliferation of pulmonary vascular smooth muscle cells (PVSMCs) and luminal occlusion, on microvascular disease with apoptosis of microvascular endothelial cells (MVECs) and on fibroblast activation with myofibroblast differentiation and accumulation of extracellular matrix were analysed. We also studied the effects of nintedanib on the levels of key mediators involved in the pathogenesis of SSc and on macrophage polarisation. RESULTS: Nintedanib inhibited proliferation of PVSMCs and prevented thickening of the vessel walls and luminal occlusion of pulmonary arteries. Treatment with nintedanib also inhibited apoptosis of MVECs and blunted the capillary rarefaction in Fra2-transgenic mice. These effects were associated with a normalisation of the serum levels of vascular endothelial growth factor in Fra2 mice on treatment with nintedanib. Nintedanib also effectively blocked myofibroblast differentiation and reduced pulmonary, dermal and myocardial fibrosis in Fra2-transgenic mice. The antifibrotic effects of nintedanib were associated with impaired M2 polarisation of monocytes and reduced numbers of M2 macrophages. CONCLUSION: Nintedanib targets core features of SSc in Fra2-transgenic mice and ameliorates histological features of pulmonary arterial hypertension, destructive microangiopathy and pulmonary and dermal fibrosis. These data might have direct implications for the ongoing phase III clinical trial with nintedanib in SSc-associated interstitial lung disease.


Assuntos
Inibidores Enzimáticos/farmacologia , Indóis/farmacologia , Escleroderma Sistêmico/tratamento farmacológico , Animais , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Fibrose , Antígeno 2 Relacionado a Fos , Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/etiologia , Ativação de Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Músculo Liso Vascular/citologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Artéria Pulmonar/efeitos dos fármacos , Escleroderma Sistêmico/complicações , Escleroderma Sistêmico/patologia , Fator A de Crescimento do Endotélio Vascular/sangue
12.
Ann Rheum Dis ; 76(8): 1467-1475, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28478401

RESUMO

OBJECTIVES: Janus kinase 2 (JAK2) has recently been described as a novel downstream mediator of the pro-fibrotic effects of transforming growth factor-ß. Although JAK2 inhibitors are in clinical use for myelodysplastic syndromes, patients often rapidly develop resistance. Tumour cells can escape the therapeutic effects of selective JAK2 inhibitors by mutation-independent transactivation of JAK2 by JAK1. Here, we used selective JAK2 inhibition as a model to test the hypothesis that chronic treatment may provoke resistance by facilitating non-physiological signalling pathways in fibroblasts. METHODS: The antifibrotic effects of long-term treatment with selective JAK2 inhibitors and reactivation of JAK2 signalling by JAK1-dependent transphosphorylation was analysed in cultured fibroblasts and experimental dermal and pulmonary fibrosis. Combined JAK1/JAK2 inhibition and co-treatment with an HSP90 inhibitor were evaluated as strategies to overcome resistance. RESULTS: The antifibrotic effects of selective JAK2 inhibitors on fibroblasts decreased with prolonged treatment as JAK2 signalling was reactivated by JAK1-dependent transphosphorylation of JAK2. This reactivation could be prevented by HSP90 inhibition, which destabilised JAK2 protein, or with combined JAK1/JAK2 inhibitors. Treatment with combined JAK1/JAK2 inhibitors or with JAK2 inhibitors in combination with HSP90 inhibitors was more effective than monotherapy with JAK2 inhibitors in bleomycin-induced pulmonary fibrosis and in adTBR-induced dermal fibrosis. CONCLUSION: Fibroblasts can develop resistance to chronic treatment with JAK2 inhibitors by induction of non-physiological JAK1-dependent transactivation of JAK2 and that inhibition of this compensatory signalling pathway, for example, by co-inhibition of JAK1 or HSP90 is important to maintain the antifibrotic effects of JAK2 inhibition with long-term treatment.


Assuntos
Fibroblastos/efeitos dos fármacos , Janus Quinase 1/efeitos dos fármacos , Janus Quinase 2/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Fibrose Pulmonar/metabolismo , Pirazóis/farmacologia , Pirimidinas/farmacologia , Escleroderma Sistêmico , Sulfonamidas/farmacologia , Adulto , Animais , Antibióticos Antineoplásicos/toxicidade , Benzoquinonas/farmacologia , Bleomicina/toxicidade , Western Blotting , Modelos Animais de Doenças , Fibroblastos/metabolismo , Fibrose , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Humanos , Imuno-Histoquímica , Janus Quinase 1/antagonistas & inibidores , Janus Quinase 1/metabolismo , Janus Quinase 2/antagonistas & inibidores , Janus Quinase 2/metabolismo , Lactamas Macrocíclicas/farmacologia , Pulmão/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Nitrilas , Fosforilação/efeitos dos fármacos , Fibrose Pulmonar/induzido quimicamente , Reação em Cadeia da Polimerase em Tempo Real , Fator de Crescimento Transformador beta/farmacologia
13.
Ann Rheum Dis ; 76(1): 244-251, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27113414

RESUMO

OBJECTIVES: TWIST1 is a member of the class B of basic helix-loop-helix transcription factors that regulates cell lineage determination and differentiation and has been implicated in epithelial-to-mesenchymal transition. Here, we aimed to investigate the role of TWIST1 for the activation of resident fibroblasts in systemic sclerosis (SSc). METHODS: The expression of Twist1 in fibroblasts was modulated by forced overexpression or siRNA-mediated knockdown. Interaction of Twist1, E12 and inhibitor Of differentiation (Id) was analysed by co-immunoprecipitation. The role of Twist1 in vivo was evaluated using inducible, conditional knockout mice with either ubiquitous or fibroblast-specific depletion of Twist1. Mice were either challenged with bleomycin or overexpressing a constitutively active transforming growth factor (TGF)ß receptor I. RESULT: The expression of TWIST1 was increased in fibroblasts in fibrotic human and murine skin in a TGFß/SMAD3-dependent manner. TWIST1 in turn enhanced TGFß-induced fibroblast activation in a p38-dependent manner. The stimulatory effects of TWIST1 on resident fibroblasts were mediated by TWIST1 homodimers. TGFß promotes the formation of TWIST1 homodimers by upregulation of TWIST1 and by induction of inhibitor of DNA-binding proteins, which have high affinity for E12/E47 and compete against TWIST1 for E12/E47 binding. Mice with selective depletion of Twist1 in fibroblasts are protected from experimental skin fibrosis in different murine models to a comparable degree as mice with ubiquitous depletion of Twist1. CONCLUSIONS: Our data identify TWIST1 as a central pro-fibrotic factor in SSc, which facilitates fibroblast activation by amplifying TGFß signalling. Targeting of TWIST1 may thus be a novel approach to normalise aberrant TGFß signalling in SSc.


Assuntos
Fibroblastos/metabolismo , Proteínas Nucleares/fisiologia , Escleroderma Sistêmico/metabolismo , Proteína 1 Relacionada a Twist/fisiologia , Animais , Estudos de Casos e Controles , Feminino , Fibroblastos/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos Knockout , Proteínas Nucleares/biossíntese , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Multimerização Proteica/fisiologia , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Escleroderma Sistêmico/patologia , Transdução de Sinais/fisiologia , Pele/patologia , Fator de Crescimento Transformador beta/farmacologia , Proteína 1 Relacionada a Twist/biossíntese , Proteína 1 Relacionada a Twist/deficiência , Proteína 1 Relacionada a Twist/genética , Proteína 1 Relacionada a Twist/metabolismo
14.
Ann Rheum Dis ; 76(4): 756-764, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27793816

RESUMO

OBJECTIVES: Hedgehog signalling plays a critical role during the pathogenesis of fibrosis in systemic sclerosis (SSc). Besides canonical hedgehog signalling with smoothened (SMO)-dependent activation of GLI transcription factors, GLI can be activated independently of classical hedgehog ligands and receptors (so-called non-canonical pathways). Here, we aimed to evaluate the role of non-canonical hedgehog signalling in SSc and to test the efficacy of direct GLI inhibitors that target simultaneously canonical and non-canonical hedgehog pathways. METHODS: The GLI inhibitor GANT-61 was used to inhibit canonical as well as non-canonical hedgehog signalling, while the SMO inhibitor vismodegib was used to selectively target canonical hedgehog signalling. Furthermore, GLI2 was selectively depleted in fibroblasts using the Cre-LoxP system. The effects of pharmacological or genetic of GLI2 on transforming growth factor-ß (TGF-ß) signalling were analysed in cultured fibroblasts, in bleomycin-induced pulmonary fibrosis and in mice with overexpression of a constitutively active TGF-ß receptor I. RESULTS: TGF-ß upregulated GLI2 in a Smad3-dependent manner and induced nuclear accumulation and DNA binding of GLI2. Fibroblast-specific knockout of GLI2 protected mice from TBRact-induced fibrosis. Combined targeting of canonical and non-canonical hedgehog signalling with direct GLI inhibitors exerted more potent antifibrotic effects than selective targeting of canonical hedgehog signalling with SMO inhibitors in experimental dermal and pulmonary fibrosis. CONCLUSIONS: Our data demonstrate that hedgehog pathways and TGF-ß signalling both converge to GLI2 and that GLI2 integrates those signalling to promote tissue fibrosis. These findings may have translational implications as non-selective inhibitors of GLI2 are in clinical use and selective molecules are currently in development.


Assuntos
Proteínas Hedgehog/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Fibrose Pulmonar/metabolismo , Escleroderma Sistêmico/genética , Escleroderma Sistêmico/metabolismo , Pele/patologia , Fator de Crescimento Transformador beta/metabolismo , Adulto , Idoso , Anilidas/farmacologia , Animais , Células Cultivadas , Colágeno Tipo I/genética , Fator de Crescimento do Tecido Conjuntivo/genética , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibrose , Técnicas de Inativação de Genes , Humanos , Fatores de Transcrição Kruppel-Like/antagonistas & inibidores , Fatores de Transcrição Kruppel-Like/genética , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Pessoa de Meia-Idade , Inibidor 1 de Ativador de Plasminogênio/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Pteridinas/farmacologia , Fibrose Pulmonar/induzido quimicamente , Piridinas/farmacologia , Pirimidinas/farmacologia , RNA Mensageiro/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Receptores de Fatores de Crescimento Transformadores beta/genética , Proteínas Recombinantes/farmacologia , Transdução de Sinais/efeitos dos fármacos , Pele/efeitos dos fármacos , Proteína Smad3/metabolismo , Receptor Smoothened/antagonistas & inibidores , Fator de Crescimento Transformador beta/farmacologia , Adulto Jovem , Proteína Gli2 com Dedos de Zinco
15.
Ann Rheum Dis ; 75(3): 623-6, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26338035

RESUMO

OBJECTIVE: Type 2 innate lymphoid cells (ILC2s), a recently identified population of lymphoid cells lacking lineage-specific receptors, promote type 2 immunity and tissue remodelling. However, the contributive role of ILC2s in the pathogenesis of systemic sclerosis (SSc) is unknown. We aimed to evaluate the levels and correlations with fibrotic manifestations in SSc. METHODS: 69 patients with SSc and 47 healthy controls were included. Blood samples and skin sections were analysed by flow cytometry and immunohistochemically by staining two complementary panels of markers. RESULTS: Dermal and circulating ILC2s were significantly elevated in patients with SSc compared with controls. Dermal, but not circulating ILC2s were activated. Stratification of the SSc population in patients with limited cutaneous SSc (lcSSc) and diffuse cutaneous SSc (dcSSc) demonstrated increased levels of ILC2s in both subgroups with significantly higher frequencies in dcSSc compared with lcSSc. Moreover, dermal and circulating ILC2 counts correlated closely with the modified Rodnan skin score and with the presence of pulmonary fibrosis. CONCLUSIONS: ILC2 counts are elevated in patients with SSc and correlate with the extent of skin fibrosis and the presence of interstitial lung disease providing compelling evidence for profibrotic effect of ILC2s in SSc.


Assuntos
Imunidade Inata/imunologia , Linfócitos/imunologia , Fibrose Pulmonar/imunologia , Escleroderma Sistêmico/imunologia , Pele/imunologia , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Fibrose , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Contagem de Linfócitos , Linfócitos/citologia , Masculino , Pessoa de Meia-Idade , Fibrose Pulmonar/sangue , Fibrose Pulmonar/etiologia , Escleroderma Sistêmico/sangue , Escleroderma Sistêmico/complicações , Escleroderma Sistêmico/patologia , Índice de Gravidade de Doença , Pele/citologia , Pele/patologia
16.
Ann Rheum Dis ; 75(3): 586-92, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25589515

RESUMO

BACKGROUND: Activating transcription factor 3 (ATF3), a member of the ATF/cAMP-responsive element binding (CREB) family of transcription factors, regulates cellular response to stress including oxidative stress. The aim of this study was to analyse the role of ATF3 in fibroblast activation in systemic sclerosis (SSc). METHODS: ATF3 was analysed by reverse transcription quantitative PCR, western blot and immunohistochemistry. ATF3 knockout fibroblasts and mice were used to study the functional role of ATF3. Knockdown experiments, reporter assays and coimmunoprecipitation were performed to study the effects of ATF3 on Smad and activation protein 1 (AP-1) signalling. The role of c-Jun was analysed by costaining, specific inactivation and coimmunoprecipitation. RESULTS: Transforming growth factor-ß (TGFß) upregulates the expression of ATF3 in SSc fibroblasts. ATF3-deficient fibroblasts were less sensitive to TGFß, whereas ectopic expression of ATF3 enhanced the profibrotic effects of TGFß. Mechanistically, ATF3 interacts with Smad3 directly on stimulation with TGFß and regulates Smad activity in a c-Jun-dependent manner. Knockout of ATF3 protected mice from bleomycin-induced fibrosis and fibrosis induced by overexpression of a constitutively active TGFß receptor I. Reporter assays and analyses of the expression of Smad target genes demonstrated that binding of ATF3 regulates the transcriptional activity of Smad3. CONCLUSIONS: We demonstrate for the first time a key role for ATF3 in fibrosis. Knockout of the ATF3 gene reduced the stimulatory effect of TGFß on fibroblasts by interfering with canonical Smad signalling and protected the mice from experimental fibrosis in two different models. ATF3 might thus be a candidate for molecular targeted therapies for SSc.


Assuntos
Fator 3 Ativador da Transcrição/genética , Fibroblastos/metabolismo , Escleroderma Sistêmico/genética , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Adulto , Idoso , Animais , Western Blotting , Estudos de Casos e Controles , Derme/citologia , Feminino , Fibrose/genética , Imunofluorescência , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas c-jun/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Escleroderma Sistêmico/metabolismo , Transdução de Sinais/genética , Fator de Transcrição AP-1/metabolismo , Adulto Jovem
17.
Ann Rheum Dis ; 75(3): 609-16, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25603829

RESUMO

OBJECTIVES: Tribbles homologue 3 (TRB3) is a pseudokinase that modifies the activation of various intracellular signalling pathways to control fundamental processes extending from mitosis and cell activation to apoptosis and modulation of gene expression. Here, we aimed to analyse the role of TRB3 in fibroblast activation in systemic sclerosis (SSc). METHODS: The expression of TRB3 was quantified by quantitative PCR, western blot and immunohistochemistry. The role of TRB3 was analysed in cultured fibroblasts and in experimental fibrosis using small interfering RNA (siRNA)-mediated knockdown and overexpression of TRB3. RESULTS: TRB3 expression was increased in fibroblasts of patients with SSc and in murine models of SSc in a transforming growth factor-ß (TGF-ß)/Smad-dependent manner. Overexpression of TRB3 stimulated canonical TGF-ß signalling and induced an activated phenotype in resting fibroblasts. In contrast, knockdown of TRB3 reduced the profibrotic effects of TGF-ß and decreased the collagen synthesis. Moreover, siRNA-mediated knockdown of TRB3 exerted potent antifibrotic effects and ameliorated bleomycin as well as constitutively active TGF-ß receptor I-induced fibrosis with reduced dermal thickening, decreased hydroxyproline content and impaired myofibroblast differentiation. CONCLUSIONS: The present study characterises TRB3 as a novel profibrotic mediator in SSc. TGF-ß induces TRB3, which in turn activates canonical TGF-ß/Smad signalling and stimulates the release of collagen, thereby inducing a positive feedback loop that may contribute to aberrant TGF-ß signalling in SSc.


Assuntos
Proteínas de Ciclo Celular/genética , Fibroblastos/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Repressoras/genética , Escleroderma Sistêmico/genética , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Adulto , Idoso , Animais , Antibióticos Antineoplásicos/toxicidade , Bleomicina/toxicidade , Estudos de Casos e Controles , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Colágeno/metabolismo , Derme/citologia , Modelos Animais de Doenças , Feminino , Fibrose/induzido quimicamente , Fibrose/genética , Técnicas de Introdução de Genes , Técnicas de Silenciamento de Genes , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Pessoa de Meia-Idade , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta , Proteínas Repressoras/metabolismo , Escleroderma Sistêmico/metabolismo , Transdução de Sinais/genética , Dermatopatias/induzido quimicamente , Dermatopatias/genética , Adulto Jovem
18.
Ann Rheum Dis ; 75(11): 2037-2044, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26851274

RESUMO

OBJECTIVES: Notch ligands and receptors have recently been shown to be differentially expressed in osteoarthritis (OA). We aim to further elucidate the functional role of Notch signalling in OA using Notch1 antisense transgenic (Notch1 AS) mice. METHODS: Notch and hedgehog signalling were analysed by real-time PCR and immunohistochemistry. Notch-1 AS mice were employed as a model of impaired Notch signalling in vivo. Experimental OA was induced by destabilisation of the medial meniscus (DMM). The extent of cartilage destruction and osteophyte formation was analysed by safranin-O staining with subsequent assessment of the Osteoarthritis Research Society International (OARSI) and Mankin scores and µCT scanning. Collagen X staining was used as a marker of chondrocyte hypertrophy. The role of hairy/enhancer of split 1 (Hes-1) was investigated with knockdown and overexpression experiments. RESULTS: Notch signalling was activated in human and murine OA with increased expression of Jagged1, Notch-1, accumulation of the Notch intracellular domain 1 and increased transcription of Hes-1. Notch1 AS mice showed exacerbated OA with increases in OARSI scores, osteophyte formation, increased subchondral bone plate density, collagen X and osteocalcin expression and elevated levels of Epas1 and ADAM-TS5 mRNA. Inhibition of the Notch pathway induced activation of hedgehog signalling with induction of Gli-1 and Gli-2 and increased transcription of hedgehog target genes. The regulatory effects of Notch signalling on Gli-expression were mimicked by Hes-1. CONCLUSIONS: Inhibition of Notch signalling activates hedgehog signalling, enhances chondrocyte hypertrophy and exacerbates experimental OA including osteophyte formation. These data suggest that the activation of the Notch pathway may limit aberrant hedgehog signalling in OA.


Assuntos
Artrite Experimental/metabolismo , Proteínas de Transporte/metabolismo , Condrócitos/metabolismo , Glicoproteínas de Membrana/metabolismo , Osteoartrite/metabolismo , Receptor Notch1/metabolismo , Fatores de Transcrição HES-1/metabolismo , Animais , Cartilagem Articular/metabolismo , Camundongos , Camundongos Transgênicos , Osteófito/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Índice de Gravidade de Doença , Transdução de Sinais
19.
Ann Rheum Dis ; 74(8): 1621-5, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25817717

RESUMO

OBJECTIVES: Stimulators of the soluble guanylate cyclase (sGC) have recently been shown to inhibit transforming growth factor-ß signalling. Here, we aimed to demonstrate that riociguat, the drug candidate for clinical trials in systemic sclerosis (SSc), is effective in experimental fibrosis and to compare its efficacy to that of phosphodiesterase V inhibitors that also increase the intracellular levels of cyclic guanosine monophosphate. METHODS: The antifibrotic effects of riociguat and sildenafil were compared in the tight-skin 1 model, in bleomycin-induced fibrosis and in a model of sclerodermatous chronic graft-versus-host-disease (cGvHD). Doses of 0.1-3 mg/kg twice a day for riociguat and of 3-10 mg/kg twice a day for sildenafil were used. RESULT: Riociguat dose-dependently reduced skin thickening, myofibroblast differentiation and accumulation of collagen with potent antifibrotic effects at 1 and 3 mg/kg. Riociguat also ameliorated fibrosis of the gastrointestinal tract in the cGvHD model. The antifibrotic effects were associated with reduced phosphorylation of extracellular signal-regulated kinases. Sildenafil at doses of 3 and 10 mg/kg exerted mild antifibrotic effects that were significantly less pronounced compared with 1 and 3 mg/kg riociguat. CONCLUSIONS: These data demonstrated potent antifibrotic effects of riociguat on experimental skin and organ fibrosis. These findings suggest a role for riociguat for the treatment of fibrotic diseases, especially for the treatment of SSc. A phase II study with riociguat in patients with SSc is currently starting.


Assuntos
Guanilato Ciclase/efeitos dos fármacos , Pirazóis/farmacologia , Pirimidinas/farmacologia , Pele/patologia , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Fibrose , Camundongos , Camundongos Endogâmicos , Inibidores da Fosfodiesterase 5/farmacologia , Pirazóis/administração & dosagem , Pirazóis/uso terapêutico , Pirimidinas/administração & dosagem , Pirimidinas/uso terapêutico , Escleroderma Sistêmico/tratamento farmacológico , Citrato de Sildenafila/farmacologia
20.
Ann Rheum Dis ; 74(9): 1748-55, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24709861

RESUMO

OBJECTIVES: S100A4 is a calcium binding protein with regulatory functions in cell homeostasis, proliferation and differentiation that has been shown to promote cancer progression and metastasis. In the present study, we evaluated the role of S100A4 in fibroblast activation in systemic sclerosis (SSc). METHODS: The expression of S100A4 was analysed in human samples, murine models of SSc and in cultured fibroblasts by real-time PCR, immunohistochemistry and western blot. The functional role of S100A4 was evaluated using siRNA, overexpression, recombinant protein and S100A4 knockout (S100A4(-/-)) mice. Transforming growth factor ß (TGF-ß) signalling was assessed by reporter assays, staining for phosphorylated Smad2/3 and analyses of target genes. RESULTS: The expression of S100A4 was increased in SSc skin and in experimental fibrosis in a TGF-ß/Smad-dependent manner. Overexpression of S100A4 or stimulation with recombinant S100A4 induced an activated phenotype in resting normal fibroblasts. In contrast, knockdown of S100A4 reduced the pro-fibrotic effects of TGF-ß and decreased the release of collagen. S100A4(-/-) mice were protected from bleomycin-induced skin fibrosis with reduced dermal thickening, decreased hydroxyproline content and lower myofibroblast counts. Deficiency of S100A4 also ameliorated fibrosis in the tight-skin-1 (Tsk-1) mouse model. CONCLUSIONS: We characterised S100A4 as a downstream mediator of the stimulatory effects of TGF-ß on fibroblasts in SSc. TGF-ß induces the expression of S100A4 to stimulate the release of collagen in SSc fibroblasts and induce fibrosis. Since S100A4 is essentially required for the pro-fibrotic effects of TGF-ß and neutralising antibodies against S100A4 are currently evaluated, S100A4 might be a candidate for novel antifibrotic therapies.


Assuntos
Fibroblastos/metabolismo , Proteínas S100/metabolismo , Escleroderma Sistêmico/metabolismo , Pele/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Adulto , Idoso , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Proteína A4 de Ligação a Cálcio da Família S100 , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA