Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Med Genet ; 61(1): 93-101, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37734847

RESUMO

BACKGROUND: Leber's hereditary optic neuropathy (LHON) is a mitochondrial disorder characterised by complex I defect leading to sudden degeneration of retinal ganglion cells. Although typically associated with pathogenic variants in mitochondrial DNA, LHON was recently described in patients carrying biallelic variants in nuclear genes DNAJC30, NDUFS2 and MCAT. MCAT is part of mitochondrial fatty acid synthesis (mtFAS), as also MECR, the mitochondrial trans-2-enoyl-CoA reductase. MECR mutations lead to a recessive childhood-onset syndromic disorder with dystonia, optic atrophy and basal ganglia abnormalities. METHODS: We studied through whole exome sequencing two sisters affected by sudden and painless visual loss at young age, with partial recovery and persistent central scotoma. We modelled the candidate variant in yeast and studied mitochondrial dysfunction in yeast and fibroblasts. We tested protein lipoylation and cell response to oxidative stress in yeast. RESULTS: Both sisters carried a homozygous pathogenic variant in MECR (p.Arg258Trp). In yeast, the MECR-R258W mutant showed an impaired oxidative growth, 30% reduction in oxygen consumption rate and 80% decrease in protein levels, pointing to structure destabilisation. Fibroblasts confirmed the reduced amount of MECR protein, but failed to reproduce the OXPHOS defect. Respiratory complexes assembly was normal. Finally, the yeast mutant lacked lipoylation of key metabolic enzymes and was more sensitive to H2O2 treatment. Lipoic Acid supplementation partially rescued the growth defect. CONCLUSION: We report the first family with homozygous MECR variant causing an LHON-like optic neuropathy, which pairs the recent MCAT findings, reinforcing the impairment of mtFAS as novel pathogenic mechanism in LHON.


Assuntos
Doenças Mitocondriais , Atrofia Óptica Hereditária de Leber , Criança , Humanos , DNA Mitocondrial/genética , Peróxido de Hidrogênio/metabolismo , Mutação , Atrofia Óptica Hereditária de Leber/genética , Atrofia Óptica Hereditária de Leber/terapia , Saccharomyces cerevisiae/genética
2.
J Med Genet ; 58(3): 155-167, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32439808

RESUMO

BACKGROUND: Mitochondria provide ATP through the process of oxidative phosphorylation, physically located in the inner mitochondrial membrane (IMM). The mitochondrial contact site and organising system (MICOS) complex is known as the 'mitoskeleton' due to its role in maintaining IMM architecture. APOO encodes MIC26, a component of MICOS, whose exact function in its maintenance or assembly has still not been completely elucidated. METHODS: We have studied a family in which the most affected subject presented progressive developmental delay, lactic acidosis, muscle weakness, hypotonia, weight loss, gastrointestinal and body temperature dysautonomia, repetitive infections, cognitive impairment and autistic behaviour. Other family members showed variable phenotype presentation. Whole exome sequencing was used to screen for pathological variants. Patient-derived skin fibroblasts were used to confirm the pathogenicity of the variant found in APOO. Knockout models in Drosophila melanogaster and Saccharomyces cerevisiae were employed to validate MIC26 involvement in MICOS assembly and mitochondrial function. RESULTS: A likely pathogenic c.350T>C transition was found in APOO predicting an I117T substitution in MIC26. The mutation caused impaired processing of the protein during import and faulty insertion into the IMM. This was associated with altered MICOS assembly and cristae junction disruption. The corresponding mutation in MIC26 or complete loss was associated with mitochondrial structural and functional deficiencies in yeast and D. melanogaster models. CONCLUSION: This is the first case of pathogenic mutation in APOO, causing altered MICOS assembly and neuromuscular impairment. MIC26 is involved in the assembly or stability of MICOS in humans, yeast and flies.


Assuntos
Apolipoproteínas/genética , Transtorno Autístico/genética , Disfunção Cognitiva/genética , Proteínas de Membrana/genética , Miopatias Mitocondriais/genética , Proteínas Mitocondriais/genética , Proteínas de Saccharomyces cerevisiae/genética , Acidose Láctica/genética , Acidose Láctica/patologia , Animais , Transtorno Autístico/patologia , Disfunção Cognitiva/patologia , Drosophila melanogaster/genética , Fibroblastos/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Humanos , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/patologia , Miopatias Mitocondriais/epidemiologia , Miopatias Mitocondriais/patologia , Ligação Proteica , Saccharomyces cerevisiae/genética
3.
Int J Mol Sci ; 22(9)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33926074

RESUMO

In most eukaryotes, mitochondrial protein synthesis is essential for oxidative phosphorylation (OXPHOS) as some subunits of the respiratory chain complexes are encoded by the mitochondrial DNA (mtDNA). Mutations affecting the mitochondrial translation apparatus have been identified as a major cause of mitochondrial diseases. These mutations include either heteroplasmic mtDNA mutations in genes encoding for the mitochondrial rRNA (mtrRNA) and tRNAs (mttRNAs) or mutations in nuclear genes encoding ribosomal proteins, initiation, elongation and termination factors, tRNA-modifying enzymes, and aminoacyl-tRNA synthetases (mtARSs). Aminoacyl-tRNA synthetases (ARSs) catalyze the attachment of specific amino acids to their cognate tRNAs. Differently from most mttRNAs, which are encoded by mitochondrial genome, mtARSs are encoded by nuclear genes and then imported into the mitochondria after translation in the cytosol. Due to the extensive use of next-generation sequencing (NGS), an increasing number of mtARSs variants associated with large clinical heterogeneity have been identified in recent years. Being most of these variants private or sporadic, it is crucial to assess their causative role in the disease by functional analysis in model systems. This review will focus on the contributions of the yeast Saccharomyces cerevisiae in the functional validation of mutations found in mtARSs genes associated with human disorders.


Assuntos
Aminoacil-tRNA Sintetases/metabolismo , Aminoacil-tRNA Sintetases/fisiologia , Mitocôndrias/metabolismo , Citosol/metabolismo , DNA Mitocondrial/genética , Humanos , Mitocôndrias/fisiologia , Doenças Mitocondriais/genética , Doenças Mitocondriais/fisiopatologia , Mutação , Fosforilação Oxidativa , Biossíntese de Proteínas , Processamento Pós-Transcricional do RNA , RNA de Transferência/genética , Saccharomyces cerevisiae/metabolismo
4.
Biochim Biophys Acta Gen Subj ; 1864(7): 129608, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32234506

RESUMO

BACKGROUND: Mutations in human gene encoding the mitochondrial DNA polymerase γ (HsPolγ) are associated with a broad range of mitochondrial diseases. Here we studied the impact on DNA replication by disease variants clustered around residue HsPolγ-K1191, a residue that in several family-A DNA polymerases interacts with the 3' end of the primer. METHODS: Specifically, we examined the effect of HsPolγ carrying pathogenic variants in residues D1184, I1185, C1188, K1191, D1196, and a stop codon at residue T1199, using as a model the yeast mitochondrial DNA polymerase protein, Mip1p. RESULTS: The introduction of pathogenic variants C1188R (yV945R), and of a stop codon at residue T1199 (yT956X) abolished both polymerization and exonucleolysis in vitro. HsPolγ substitutions in residues D1184 (yD941), I1185 (yI942), K1191 (yK948) and D1196 (yD953) shifted the balance between polymerization and exonucleolysis in favor of exonucleolysis. HsPolγ pathogenic variants at residue K1191 (yK948) and D1184 (yD941) were capable of nucleotide incorporation albeit with reduced processivity. Structural analysis of mitochondrial DNAPs showed that residue HsPolγ-N864 is placed in an optimal distance to interact with the 3' end of the primer and the phosphate backbone previous to the 3' end. Amino acid changes in residue HsPolγ-N864 to Ala, Ser or Asp result in enzymes that did not decrease their polymerization activity on short templates but exhibited a substantial decrease for processive DNA synthesis. CONCLUSION: Our data suggest that in mitochondrial DNA polymerases multiple amino acids are involved in the primer-stand stabilization.


Assuntos
DNA Polimerase gama/genética , DNA Mitocondrial/metabolismo , Doenças Mitocondriais/metabolismo , DNA Polimerase gama/química , DNA Polimerase gama/metabolismo , Replicação do DNA/genética , DNA Mitocondrial/química , Humanos , Modelos Moleculares , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA