Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 561(7724): 507-511, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30202091

RESUMO

Multiple optical harmonic generation-the multiplication of photon energy as a result of nonlinear interaction between light and matter-is a key technology in modern electronics and optoelectronics, because it allows the conversion of optical or electronic signals into signals with much higher frequency, and the generation of frequency combs. Owing to the unique electronic band structure of graphene, which features massless Dirac fermions1-3, it has been repeatedly predicted that optical harmonic generation in graphene should be particularly efficient at the technologically important terahertz frequencies4-6. However, these predictions have yet to be confirmed experimentally under technologically relevant operation conditions. Here we report the generation of terahertz harmonics up to the seventh order in single-layer graphene at room temperature and under ambient conditions, driven by terahertz fields of only tens of kilovolts per centimetre, and with field conversion efficiencies in excess of 10-3, 10-4 and 10-5 for the third, fifth and seventh terahertz harmonics, respectively. These conversion efficiencies are remarkably high, given that the electromagnetic interaction occurs in a single atomic layer. The key to such extremely efficient generation of terahertz high harmonics in graphene is the collective thermal response of its background Dirac electrons to the driving terahertz fields. The terahertz harmonics, generated via hot Dirac fermion dynamics, were observed directly in the time domain as electromagnetic field oscillations at these newly synthesized higher frequencies. The effective nonlinear optical coefficients of graphene for the third, fifth and seventh harmonics exceed the respective nonlinear coefficients of typical solids by 7-18 orders of magnitude7-9. Our results provide a direct pathway to highly efficient terahertz frequency synthesis using the present generation of graphene electronics, which operate at much lower fundamental frequencies of only a few hundreds of gigahertz.

2.
Nano Lett ; 23(9): 3872-3878, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37116109

RESUMO

Several technologies, including photodetection, imaging, and data communication, could greatly benefit from the availability of fast and controllable conversion of terahertz (THz) light to visible light. Here, we demonstrate that the exceptional properties and dynamics of electronic heat in graphene allow for a THz-to-visible conversion, which is switchable at a sub-nanosecond time scale. We show a tunable on/off ratio of more than 30 for the emitted visible light, achieved through electrical gating using a gate voltage on the order of 1 V. We also demonstrate that a grating-graphene metamaterial leads to an increase in THz-induced emitted power in the visible range by 2 orders of magnitude. The experimental results are in agreement with a thermodynamic model that describes blackbody radiation from the electron system heated through intraband Drude absorption of THz light. These results provide a promising route toward novel functionalities of optoelectronic technologies in the THz regime.

3.
J Chem Phys ; 152(7): 074715, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32087667

RESUMO

The conversion of optical and electrical energies in novel materials is key to modern optoelectronic and light-harvesting applications. Here, we investigate the equilibration dynamics of photoexcited 2,7-bis(biphenyl-4-yl)-2',7'-ditertbutyl-9,9'-spirobifluorene (SP6) molecules adsorbed on ZnO(10-10) using femtosecond time-resolved two-photon photoelectron and optical spectroscopies. We find that, after initial ultrafast relaxation on femtosecond and picosecond time scales, an optically dark state is populated, likely the SP6 triplet (T) state, that undergoes Dexter-type energy transfer (rDex = 1.3 nm) and exhibits a long decay time of 0.1 s. Because of this long lifetime, a photostationary state with average T-T distances below 2 nm is established at excitation densities in the 1020 cm-2 s-1 range. This large density enables decay by T-T annihilation (TTA) mediating autoionization despite an extremely low TTA rate of kTTA = 4.5 ⋅ 10-26 m3 s-1. The large external quantum efficiency of the autoionization process (up to 15%) and photocurrent densities in the mA cm-2 range offer great potential for light-harvesting applications.

4.
J Am Chem Soc ; 137(10): 3520-4, 2015 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-25611976

RESUMO

Using femtosecond time-resolved two-photon photoelectron spectroscopy, we determine (i) the vertical binding energy (VBE = 0.8 eV) of electrons in the conduction band in supported amorphous solid water (ASW) layers, (ii) the time scale of ultrafast trapping at pre-existing sites (22 fs), and (iii) the initial VBE (1.4 eV) of solvated electrons before significant molecular reorganization sets in. Our results suggest that the excess electron dynamics prior to solvation are representative for bulk ASW.

5.
Adv Sci (Weinh) ; : e2403765, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874072

RESUMO

Organic/inorganic hybrid systems offer great potential for novel solar cell design combining the tunability of organic chromophore absorption properties with high charge carrier mobilities of inorganic semiconductors. However, often such material combinations do not show the expected performance: while ZnO, for example, basically exhibits all necessary properties for a successful application in light-harvesting, it was clearly outpaced by TiO2 in terms of charge separation efficiency. The origin of this deficiency has long been debated. This study employs femtosecond time-resolved photoelectron spectroscopy and many-body ab initio calculations to identify and quantify all elementary steps leading to the suppression of charge separation at an exemplary organic/ZnO interface. It is demonstrated that charge separation indeed occurs efficiently on ultrafast (350 fs) timescales, but that electrons are recaptured at the interface on a 100 ps timescale and subsequently trapped in a strongly bound (0.7 eV) hybrid exciton state with a lifetime exceeding 5 µs. Thus, initially successful charge separation is followed by delayed electron capture at the interface, leading to apparently low charge separation efficiencies. This finding provides a sufficiently large time frame for counter-measures in device design to successfully implement specifically ZnO and, moreover, invites material scientists to revisit charge separation in various kinds of previously discarded hybrid systems.

6.
Sci Adv ; 10(11): eadi7598, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489363

RESUMO

Ultrafast optical control of quantum systems is an emerging field of physics. In particular, the possibility of light-driven superconductivity has attracted much of attention. To identify nonequilibrium superconductivity, it is necessary to measure fingerprints of superconductivity on ultrafast timescales. Recently, nonlinear THz third-harmonic generation (THG) was shown to directly probe the collective degrees of freedoms of the superconducting condensate, including the Higgs mode. Here, we extend this idea to light-driven nonequilibrium states in superconducting La2-xSrxCuO4, establishing an optical pump-THz-THG drive protocol to access the transient superconducting order-parameter quench and recovering on few-picosecond timescales. We show in particular the ability of two-dimensional TH spectroscopy to disentangle the effects of optically excited quasiparticles from the pure order-parameter dynamics, which are unavoidably mixed in the pump-driven linear THz response. Benchmarking the gap dynamics to existing experiments shows the ability of driven THG spectroscopy to overcome these limitations in ordinary pump-probe protocols.

7.
Nat Commun ; 15(1): 5472, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942783

RESUMO

Understanding spin-lattice interactions in antiferromagnets is a critical element of the fields of antiferromagnetic spintronics and magnonics. Recently, coherent nonlinear phonon dynamics mediated by a magnon state were discovered in an antiferromagnet. Here, we suggest that a strongly coupled two-magnon-one phonon state in this prototypical system opens a novel pathway to coherently control magnon-phonon dynamics. Utilizing intense narrow-band terahertz (THz) pulses and tunable magnetic fields up to µ0Hext = 7 T, we experimentally realize the conditions of magnon-phonon Fermi resonance in antiferromagnetic CoF2. These conditions imply that both the spin and the lattice anharmonicities harvest energy from the transfer between the subsystems if the magnon eigenfrequency fm is half the frequency of the phonon 2fm = fph. Performing THz pump-infrared probe spectroscopy in conjunction with simulations, we explore the coupled magnon-phonon dynamics in the vicinity of the Fermi-resonance and reveal the corresponding fingerprints of nonlinear interaction facilitating energy exchange between these subsystems.

8.
J Chem Phys ; 139(17): 174701, 2013 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-24206316

RESUMO

Using thermal desorption and photoelectron spectroscopy to study the adsorption of pyridine on ZnO(1010), we find that the work function is significantly reduced from 4.5 eV for the bare ZnO surface to 1.6 eV for one monolayer of adsorbed pyridine. Further insight into the interface morphology and binding mechanism is obtained using density functional theory. Although semilocal density functional theory provides unsatisfactory total work functions, excellent agreement of the work function changes is achieved for all coverages. In a closed monolayer, pyridine is found to bind to every second surface Zn atom. The strong polarity of the Zn-pyridine bond and the molecular dipole moment act cooperatively, leading to the observed strong work function reduction. Based on simple alignment considerations, we illustrate that even larger work function modifications should be achievable using molecules with negative electron affinity. We expect the application of such molecules to significantly reduce the electron injection barriers at ZnO/organic heterostructures.

9.
Nat Commun ; 14(1): 7010, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919284

RESUMO

Efficient generation and control of spin currents launched by terahertz (THz) radiation with subsequent ultrafast spin-to-charge conversion is the current challenge for the next generation of high-speed communication and data processing units. Here, we demonstrate that THz light can efficiently drive coherent angular momentum transfer in nanometer-thick ferromagnet/heavy-metal heterostructures. This process is non-resonant and does neither require external magnetic fields nor cryogenics. The efficiency of this process is more than one order of magnitude higher as compared to the recently observed THz-induced spin pumping in MnF2 antiferromagnet. The coherently driven spin currents originate from the ultrafast spin Seebeck effect, caused by a THz-induced temperature imbalance in electronic and magnonic temperatures and fast relaxation of the electron-phonon system. Owing to the fact that the electron-phonon relaxation time is comparable with the period of a THz wave, the induced spin current results in THz second harmonic generation and THz optical rectification, providing a spintronic basis for THz frequency mixing and rectifying components.

10.
Natl Sci Rev ; 10(7): nwad136, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37396487

RESUMO

Non-linear materials are cornerstones of modern optics and electronics. Strong dependence on the intrinsic properties of particular materials, however, inhibits the at-will extension of demanding non-linear effects, especially those second-order ones, to widely adopted centrosymmetric materials (for example, silicon) and technologically important burgeoning spectral domains (for example, terahertz frequencies). Here we introduce a universal route to efficient non-linear responses enabled by exciting non-linear Thomson scattering, a fundamental process in electrodynamics that was known to occur only in relativistic electrons in metamaterial composed of linear materials. Such a mechanism modulates the trajectory of charges, either intrinsically or extrinsically provided in solids, at twice the driving frequency, allowing second-harmonic generation at terahertz frequencies on crystalline silicon with extremely large non-linear susceptibility in our proof-of-concept experiments. By offering a substantially material- and frequency-independent platform, our approach opens new possibilities in the fields of on-demand non-linear optics, terahertz sources, strong field light-solid interactions and integrated photonic circuits.

11.
Nat Commun ; 14(1): 1343, 2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36906577

RESUMO

Cuprate high-Tc superconductors are known for their intertwined interactions and the coexistence of competing orders. Uncovering experimental signatures of these interactions is often the first step in understanding their complex relations. A typical spectroscopic signature of the interaction between a discrete mode and a continuum of excitations is the Fano resonance/interference, characterized by the asymmetric light-scattering amplitude of the discrete mode as a function of the electromagnetic driving frequency. In this study, we report a new type of Fano resonance manifested by the nonlinear terahertz response of cuprate high-Tc superconductors, where we resolve both the amplitude and phase signatures of the Fano resonance. Our extensive hole-doping and magnetic field dependent investigation suggests that the Fano resonance may arise from an interplay between the superconducting fluctuations and the charge density wave fluctuations, prompting future studies to look more closely into their dynamical interactions.

12.
Light Sci Appl ; 11(1): 315, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36316317

RESUMO

Achieving efficient, high-power harmonic generation in the terahertz spectral domain has technological applications, for example, in sixth generation (6G) communication networks. Massless Dirac fermions possess extremely large terahertz nonlinear susceptibilities and harmonic conversion efficiencies. However, the observed maximum generated harmonic power is limited, because of saturation effects at increasing incident powers, as shown recently for graphene. Here, we demonstrate room-temperature terahertz harmonic generation in a Bi2Se3 topological insulator and topological-insulator-grating metamaterial structures with surface-selective terahertz field enhancement. We obtain a third-harmonic power approaching the milliwatt range for an incident power of 75 mW-an improvement by two orders of magnitude compared to a benchmarked graphene sample. We establish a framework in which this exceptional performance is the result of thermodynamic harmonic generation by the massless topological surface states, benefiting from ultrafast dissipation of electronic heat via surface-bulk Coulomb interactions. These results are an important step towards on-chip terahertz (opto)electronic applications.

13.
Sci Adv ; 7(15)2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33827824

RESUMO

Graphene is conceivably the most nonlinear optoelectronic material we know. Its nonlinear optical coefficients in the terahertz frequency range surpass those of other materials by many orders of magnitude. Here, we show that the terahertz nonlinearity of graphene, both for ultrashort single-cycle and quasi-monochromatic multicycle input terahertz signals, can be efficiently controlled using electrical gating, with gating voltages as low as a few volts. For example, optimal electrical gating enhances the power conversion efficiency in terahertz third-harmonic generation in graphene by about two orders of magnitude. Our experimental results are in quantitative agreement with a physical model of the graphene nonlinearity, describing the time-dependent thermodynamic balance maintained within the electronic population of graphene during interaction with ultrafast electric fields. Our results can serve as a basis for straightforward and accurate design of devices and applications for efficient electronic signal processing in graphene at ultrahigh frequencies.

14.
ACS Nano ; 15(1): 1145-1154, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33306364

RESUMO

Nonlinear optics is an increasingly important field for scientific and technological applications, owing to its relevance and potential for optical and optoelectronic technologies. Currently, there is an active search for suitable nonlinear material systems with efficient conversion and a small material footprint. Ideally, the material system should allow for chip integration and room-temperature operation. Two-dimensional materials are highly interesting in this regard. Particularly promising is graphene, which has demonstrated an exceptionally large nonlinearity in the terahertz regime. Yet, the light-matter interaction length in two-dimensional materials is inherently minimal, thus limiting the overall nonlinear optical conversion efficiency. Here, we overcome this challenge using a metamaterial platform that combines graphene with a photonic grating structure providing field enhancement. We measure terahertz third-harmonic generation in this metamaterial and obtain an effective third-order nonlinear susceptibility with a magnitude as large as 3 × 10-8 m2/V2, or 21 esu, for a fundamental frequency of 0.7 THz. This nonlinearity is 50 times larger than what we obtain for graphene without grating. Such an enhancement corresponds to a third-harmonic signal with an intensity that is 3 orders of magnitude larger due to the grating. Moreover, we demonstrate a field conversion efficiency for the third harmonic of up to ∼1% using a moderate field strength of ∼30 kV/cm. Finally, we show that harmonics beyond the third are enhanced even more strongly, allowing us to observe signatures of up to the ninth harmonic. Grating-graphene metamaterials thus constitute an outstanding platform for commercially viable, CMOS-compatible, room-temperature, chip-integrated, THz nonlinear conversion applications.

15.
Nat Commun ; 11(1): 2451, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32415119

RESUMO

Harmonic generation is a general characteristic of driven nonlinear systems, and serves as an efficient tool for investigating the fundamental principles that govern the ultrafast nonlinear dynamics. Here, we report on terahertz-field driven high-harmonic generation in the three-dimensional Dirac semimetal Cd3As2 at room temperature. Excited by linearly-polarized multi-cycle terahertz pulses, the third-, fifth-, and seventh-order harmonic generation is very efficient and detected via time-resolved spectroscopic techniques. The observed harmonic radiation is further studied as a function of pump-pulse fluence. Their fluence dependence is found to deviate evidently from the expected power-law dependence in the perturbative regime. The observed highly non-perturbative behavior is reproduced based on our analysis of the intraband kinetics of the terahertz-field driven nonequilibrium state using the Boltzmann transport theory. Our results indicate that the driven nonlinear kinetics of the Dirac electrons plays the central role for the observed highly nonlinear response.

16.
Nat Commun ; 11(1): 1793, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286291

RESUMO

In high-energy physics, the Higgs field couples to gauge bosons and fermions and gives mass to their elementary excitations. Experimentally, such couplings can be inferred from the decay product of the Higgs boson, i.e., the scalar (amplitude) excitation of the Higgs field. In superconductors, Cooper pairs bear a close analogy to the Higgs field. Interaction between the Cooper pairs and other degrees of freedom provides dissipation channels for the amplitude mode, which may reveal important information about the microscopic pairing mechanism. To this end, we investigate the Higgs (amplitude) mode of several cuprate thin films using phase-resolved terahertz third harmonic generation (THG). In addition to the heavily damped Higgs mode itself, we observe a universal jump in the phase of the driven Higgs oscillation as well as a non-vanishing THG above Tc. These findings indicate coupling of the Higgs mode to other collective modes and potentially a nonzero pairing amplitude above Tc.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA