Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
J Neurol Neurosurg Psychiatry ; 95(7): 682-690, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38383154

RESUMO

BACKGROUND: Spinal cord damage is a feature of many spinocerebellar ataxias (SCAs), but well-powered in vivo studies are lacking and links with disease severity and progression remain unclear. Here we characterise cervical spinal cord morphometric abnormalities in SCA1, SCA2, SCA3 and SCA6 using a large multisite MRI dataset. METHODS: Upper spinal cord (vertebrae C1-C4) cross-sectional area (CSA) and eccentricity (flattening) were assessed using MRI data from nine sites within the ENIGMA-Ataxia consortium, including 364 people with ataxic SCA, 56 individuals with preataxic SCA and 394 nonataxic controls. Correlations and subgroup analyses within the SCA cohorts were undertaken based on disease duration and ataxia severity. RESULTS: Individuals in the ataxic stage of SCA1, SCA2 and SCA3, relative to non-ataxic controls, had significantly reduced CSA and increased eccentricity at all examined levels. CSA showed large effect sizes (d>2.0) and correlated with ataxia severity (r<-0.43) and disease duration (r<-0.21). Eccentricity correlated only with ataxia severity in SCA2 (r=0.28). No significant spinal cord differences were evident in SCA6. In preataxic individuals, CSA was significantly reduced in SCA2 (d=1.6) and SCA3 (d=1.7), and the SCA2 group also showed increased eccentricity (d=1.1) relative to nonataxic controls. Subgroup analyses confirmed that CSA and eccentricity are abnormal in early disease stages in SCA1, SCA2 and SCA3. CSA declined with disease progression in all, whereas eccentricity progressed only in SCA2. CONCLUSIONS: Spinal cord abnormalities are an early and progressive feature of SCA1, SCA2 and SCA3, but not SCA6, which can be captured using quantitative MRI.


Assuntos
Imageamento por Ressonância Magnética , Ataxias Espinocerebelares , Humanos , Ataxias Espinocerebelares/diagnóstico por imagem , Ataxias Espinocerebelares/patologia , Ataxias Espinocerebelares/genética , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Genótipo , Idoso , Medula Espinal/patologia , Medula Espinal/diagnóstico por imagem , Medula Cervical/diagnóstico por imagem , Medula Cervical/patologia , Índice de Gravidade de Doença , Estudos de Casos e Controles
2.
Neuroimage ; 270: 119950, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36822250

RESUMO

Understanding cerebellar alterations due to healthy aging provides a reference point against which pathological findings in late-onset disease, for example spinocerebellar ataxia type 6 (SCA6), can be contrasted. In the present study, we investigated the impact of aging on the cerebellar nuclei and cerebellar cortex in 109 healthy controls (age range: 16 - 78 years) using 3 Tesla magnetic resonance imaging (MRI). Findings were compared with 25 SCA6 patients (age range: 38 - 78 years). A subset of 16 SCA6 (included: 14) patients and 50 controls (included: 45) received an additional MRI scan at 7 Tesla and were re-scanned after one year. MRI included T1-weighted, T2-weighted FLAIR, and multi-echo T2*-weighted imaging. The T2*-weighted phase images were converted to quantitative susceptibility maps (QSM). Since the cerebellar nuclei are characterized by elevated iron content with respect to their surroundings, two independent raters manually outlined them on the susceptibility maps. T1-weighted images acquired at 3T were utilized to automatically identify the cerebellar gray matter (GM) volume. Linear correlations revealed significant atrophy of the cerebellum due to tissue loss of cerebellar cortical GM in healthy controls with increasing age. Reduction of the cerebellar GM was substantially stronger in SCA6 patients. The volume of the dentate nuclei did not exhibit a significant relationship with age, at least in the age range between 18 and 78 years, whereas mean susceptibilities of the dentate nuclei increased with age. As previously shown, the dentate nuclei volumes were smaller and magnetic susceptibilities were lower in SCA6 patients compared to age- and sex-matched controls. The significant dentate volume loss in SCA6 patients could also be confirmed with 7T MRI. Linear mixed effects models and individual paired t-tests accounting for multiple comparisons revealed no statistical significant change in volume and susceptibility of the dentate nuclei after one year in neither patients nor controls. Importantly, dentate volumes were more sensitive to differentiate between SCA6 (Cohen's d = 3.02) and matched controls than the cerebellar cortex volume (d = 2.04). In addition to age-related decline of the cerebellar cortex and atrophy in SCA6 patients, age-related increase of susceptibility of the dentate nuclei was found in controls, whereas dentate volume and susceptibility was significantly decreased in SCA6 patients. Because no significant changes of any of these parameters was found at follow-up, these measures do not allow to monitor disease progression at short intervals.


Assuntos
Ataxias Espinocerebelares , Humanos , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Ataxias Espinocerebelares/diagnóstico por imagem , Ataxias Espinocerebelares/patologia , Cerebelo/patologia , Córtex Cerebelar/diagnóstico por imagem , Córtex Cerebelar/patologia , Núcleos Cerebelares/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Atrofia/patologia
3.
Mov Disord ; 38(1): 45-56, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36308733

RESUMO

BACKGROUND: Spinal cord damage is a hallmark of Friedreich's ataxia (FRDA), but its progression and clinical correlates remain unclear. OBJECTIVE: The objective of this study was to perform a characterization of cervical spinal cord structural damage in a large multisite FRDA cohort. METHODS: We performed a cross-sectional analysis of cervical spinal cord (C1-C4) cross-sectional area (CSA) and eccentricity using magnetic resonance imaging data from eight sites within the ENIGMA-Ataxia initiative, including 256 individuals with FRDA and 223 age- and sex-matched control subjects. Correlations and subgroup analyses within the FRDA cohort were undertaken based on disease duration, ataxia severity, and onset age. RESULTS: Individuals with FRDA, relative to control subjects, had significantly reduced CSA at all examined levels, with large effect sizes (d > 2.1) and significant correlations with disease severity (r < -0.4). Similarly, we found significantly increased eccentricity (d > 1.2), but without significant clinical correlations. Subgroup analyses showed that CSA and eccentricity are abnormal at all disease stages. However, although CSA appears to decrease progressively, eccentricity remains stable over time. CONCLUSIONS: Previous research has shown that increased eccentricity reflects dorsal column (DC) damage, while decreased CSA reflects either DC or corticospinal tract (CST) damage, or both. Hence our data support the hypothesis that damage to the DC and damage to CST follow distinct courses in FRDA: developmental abnormalities likely define the DC, while CST alterations may be both developmental and degenerative. These results provide new insights about FRDA pathogenesis and indicate that CSA of the cervical spinal cord should be investigated further as a potential biomarker of disease progression. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Ataxia de Friedreich , Transtornos dos Movimentos , Humanos , Ataxia de Friedreich/complicações , Ataxia de Friedreich/patologia , Ataxia , Imageamento por Ressonância Magnética/métodos , Tratos Piramidais
4.
Cerebellum ; 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280482

RESUMO

With many viable strategies in the therapeutic pipeline, upcoming clinical trials in hereditary and sporadic degenerative ataxias will benefit from non-invasive MRI biomarkers for patient stratification and the evaluation of therapies. The MRI Biomarkers Working Group of the Ataxia Global Initiative therefore devised guidelines to facilitate harmonized MRI data acquisition in clinical research and trials in ataxias. Recommendations are provided for a basic structural MRI protocol that can be used for clinical care and for an advanced multi-modal MRI protocol relevant for research and trial settings. The advanced protocol consists of modalities with demonstrated utility for tracking brain changes in degenerative ataxias and includes structural MRI, magnetic resonance spectroscopy, diffusion MRI, quantitative susceptibility mapping, and resting-state functional MRI. Acceptable ranges of acquisition parameters are provided to accommodate diverse scanner hardware in research and clinical contexts while maintaining a minimum standard of data quality. Important technical considerations in setting up an advanced multi-modal protocol are outlined, including the order of pulse sequences, and example software packages commonly used for data analysis are provided. Outcome measures most relevant for ataxias are highlighted with use cases from recent ataxia literature. Finally, to facilitate access to the recommendations by the ataxia clinical and research community, examples of datasets collected with the recommended parameters are provided and platform-specific protocols are shared via the Open Science Framework.

5.
Hum Brain Mapp ; 43(5): 1611-1629, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34894171

RESUMO

Cerebellar degeneration progressively impairs motor function. Recent research showed that cerebellar patients can improve motor performance with practice, but the optimal feedback type (visual, proprioceptive, verbal) for such learning and the underlying neuroplastic changes are unknown. Here, patients with cerebellar degeneration (N = 40) and age- and sex-matched healthy controls (N = 40) practiced single-joint, goal-directed forearm movements for 5 days. Cerebellar patients improved performance during visuomotor practice, but a training focusing on either proprioceptive feedback, or explicit verbal feedback and instruction did not show additional benefits. Voxel-based morphometry revealed that after training gray matter volume (GMV) was increased prominently in the visual association cortices of controls, whereas cerebellar patients exhibited GMV increase predominantly in premotor cortex. The premotor cortex as a recipient of cerebellar efferents appears to be an important hub in compensatory remodeling following damage of the cerebro-cerebellar motor system.


Assuntos
Imageamento por Ressonância Magnética , Doenças Neurodegenerativas , Encéfalo/diagnóstico por imagem , Cerebelo/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Humanos
6.
Ann Neurol ; 90(4): 570-583, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34435700

RESUMO

OBJECTIVE: Friedreich ataxia (FRDA) is an inherited neurological disease defined by progressive movement incoordination. We undertook a comprehensive characterization of the spatial profile and progressive evolution of structural brain abnormalities in people with FRDA. METHODS: A coordinated international analysis of regional brain volume using magnetic resonance imaging data charted the whole-brain profile, interindividual variability, and temporal staging of structural brain differences in 248 individuals with FRDA and 262 healthy controls. RESULTS: The brainstem, dentate nucleus region, and superior and inferior cerebellar peduncles showed the greatest reductions in volume relative to controls (Cohen d = 1.5-2.6). Cerebellar gray matter alterations were most pronounced in lobules I-VI (d = 0.8), whereas cerebral differences occurred most prominently in precentral gyri (d = 0.6) and corticospinal tracts (d = 1.4). Earlier onset age predicted less volume in the motor cerebellum (rmax  = 0.35) and peduncles (rmax  = 0.36). Disease duration and severity correlated with volume deficits in the dentate nucleus region, brainstem, and superior/inferior cerebellar peduncles (rmax  = -0.49); subgrouping showed these to be robust and early features of FRDA, and strong candidates for further biomarker validation. Cerebral white matter abnormalities, particularly in corticospinal pathways, emerge as intermediate disease features. Cerebellar and cerebral gray matter loss, principally targeting motor and sensory systems, preferentially manifests later in the disease course. INTERPRETATION: FRDA is defined by an evolving spatial profile of neuroanatomical changes beyond primary pathology in the cerebellum and spinal cord, in line with its progressive clinical course. The design, interpretation, and generalization of research studies and clinical trials must consider neuroanatomical staging and associated interindividual variability in brain measures. ANN NEUROL 2021;90:570-583.


Assuntos
Encéfalo/patologia , Ataxia de Friedreich/diagnóstico por imagem , Processamento de Imagem Assistida por Computador , Adulto , Idade de Início , Encéfalo/anatomia & histologia , Progressão da Doença , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Tratos Piramidais/patologia , Adulto Jovem
7.
Neuroimage ; 241: 118442, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34339831

RESUMO

Multiple studies have reported a significant dependence of the effective transverse relaxation rate constant (R2*) and the phase of gradient-echo based (GRE) signal on the orientation of white matter fibres in the human brain. It has also been hypothesized that magnetic susceptibility, as obtained by single-orientation quantitative susceptibility mapping (QSM), exhibits such a dependence. In this study, we investigated this hypothesized relationship in a cohort of healthy volunteers. We show that R2* follows the predicted orientation dependence consistently across white matter regions, whereas the apparent magnetic susceptibility is related differently to fibre orientation across the brain and often in a complex non-monotonic manner. In addition, we explored the effect of fractional anisotropy measured by diffusion-weighted MRI on the strength of the orientation dependence and observed only a limited influence in many regions. However, with careful consideration of such an impact and the limitations imposed by the ill-posed nature of the dipole inversion process, it is possible to study magnetic susceptibility anisotropy in specific brain regions with a single orientation acquisition.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Imagem de Difusão por Ressonância Magnética/métodos , Orientação/fisiologia , Substância Branca/diagnóstico por imagem , Substância Branca/fisiologia , Adulto , Idoso , Anisotropia , Estudos de Coortes , Imagem de Difusão por Ressonância Magnética/normas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
8.
PLoS Comput Biol ; 15(6): e1007073, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31237876

RESUMO

A large variety of severe medical conditions involve alterations in microvascular circulation. Hence, measurements or simulation of circulation and perfusion has considerable clinical value and can be used for diagnostics, evaluation of treatment efficacy, and for surgical planning. However, the accuracy of traditional tracer kinetic one-compartment models is limited due to scale dependency. As a remedy, we propose a scale invariant mathematical framework for simulating whole brain perfusion. The suggested framework is based on a segmentation of anatomical geometry down to imaging voxel resolution. Large vessels in the arterial and venous network are identified from time-of-flight (ToF) and quantitative susceptibility mapping (QSM). Macro-scale flow in the large-vessel-network is accurately modelled using the Hagen-Poiseuille equation, whereas capillary flow is treated as two-compartment porous media flow. Macro-scale flow is coupled with micro-scale flow by a spatially distributing support function in the terminal endings. Perfusion is defined as the transition of fluid from the arterial to the venous compartment. We demonstrate a whole brain simulation of tracer propagation on a realistic geometric model of the human brain, where the model comprises distinct areas of grey and white matter, as well as large vessels in the arterial and venous vascular network. Our proposed framework is an accurate and viable alternative to traditional compartment models, with high relevance for simulation of brain perfusion and also for restoration of field parameters in clinical brain perfusion applications.


Assuntos
Encéfalo , Circulação Cerebrovascular/fisiologia , Biologia Computacional/métodos , Imageamento por Ressonância Magnética/métodos , Modelos Cardiovasculares , Adulto , Algoritmos , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Simulação por Computador , Humanos , Masculino , Perfusão
9.
Neuroimage ; 179: 117-133, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29890327

RESUMO

Quantitative susceptibility mapping (QSM) and effective transverse relaxation rate (R2*) mapping are both highly sensitive to variations in brain iron content. Clinical Magnetic Resonance Imaging (MRI) studies report changes of susceptibilities and relaxation rates in various neurological diseases which are often equated with changes in regional brain iron content. However, these mentioned metrics lack specificity for iron, since they are also influenced by the presence of myelin. In this study, we assessed the extent to which QSM and R2* reflect iron concentration as well as histological iron and myelin intensities. Six unfixed human post-mortem brains were imaged in situ with a 7 T MRI scanner. After formalin fixation, the brains were sliced axially and punched. 671 tissue punches were subjected to ferrozine iron quantification. Subsequently, brain slices were embedded in paraffin, and histological double-hemispheric axial brain slices were stained for Luxol fast blue (myelin) and diaminobenzidine (DAB)-enhanced Turnbull blue (iron). 3331 regions of interest (ROIs) were drawn on the histological stainings to assess myelin and iron intensities, which were compared with MRI data in corresponding ROIs. QSM more closely reflected quantitative ferrozine iron values (r = 0.755 vs. 0.738), whereas R2* correlated better with iron staining intensities (r = 0.619 vs. 0.445). Myelin intensities correlated negatively with QSM (r = -0.352), indicating a diamagnetic effect of myelin on susceptibility. Myelin intensities were higher in the thalamus than in the basal ganglia. A significant relationship was nonetheless observed between quantitative iron values and QSM, confirming the applicability of the latter in this brain region for iron quantification.


Assuntos
Química Encefálica/fisiologia , Mapeamento Encefálico/métodos , Ferro/análise , Bainha de Mielina/química , Idoso , Idoso de 80 Anos ou mais , Cadáver , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Masculino
11.
NMR Biomed ; 30(4)2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27434134

RESUMO

Magnetic susceptibility describes the magnetizability of a material to an applied magnetic field and represents an important parameter in the field of MRI. With the recently introduced method of quantitative susceptibility mapping (QSM) and its conceptual extension to susceptibility tensor imaging (STI), the non-invasive assessment of this important physical quantity has become possible with MRI. Both methods solve the ill-posed inverse problem to determine the magnetic susceptibility from local magnetic fields. Whilst QSM allows the extraction of the spatial distribution of the bulk magnetic susceptibility from a single measurement, STI enables the quantification of magnetic susceptibility anisotropy, but requires multiple measurements with different orientations of the object relative to the main static magnetic field. In this review, we briefly recapitulate the fundamental theoretical foundation of QSM and STI, as well as computational strategies for the characterization of magnetic susceptibility with MRI phase data. In the second part, we provide an overview of current methodological and clinical applications of QSM with a focus on brain imaging. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Algoritmos , Encéfalo/metabolismo , Imagem de Difusão por Ressonância Magnética/métodos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Animais , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
12.
NMR Biomed ; 30(4)2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27259117

RESUMO

Sophisticated harmonic artifact reduction for phase data (SHARP) is a method to remove background field contributions in MRI phase images, which is an essential processing step for quantitative susceptibility mapping (QSM). To perform SHARP, a spherical kernel radius and a regularization parameter need to be defined. In this study, we carried out an extensive analysis of the effect of these two parameters on the corrected phase images and on the reconstructed susceptibility maps. As a result of the dependence of the parameters on acquisition and processing characteristics, we propose a new SHARP scheme with generalized parameters. The new SHARP scheme uses a high-pass filtering approach to define the regularization parameter. We employed the variable-kernel SHARP (V-SHARP) approach, using different maximum radii (Rm ) between 1 and 15 mm and varying regularization parameters (f) in a numerical brain model. The local root-mean-square error (RMSE) between the ground-truth, background-corrected field map and the results from SHARP decreased towards the center of the brain. RMSE of susceptibility maps calculated with a spatial domain algorithm was smallest for Rm between 6 and 10 mm and f between 0 and 0.01 mm-1 , and for maps calculated with a Fourier domain algorithm for Rm between 10 and 15 mm and f between 0 and 0.0091 mm-1 . We demonstrated and confirmed the new parameter scheme in vivo. The novel regularization scheme allows the use of the same regularization parameter irrespective of other imaging parameters, such as image resolution. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Algoritmos , Artefatos , Encéfalo/anatomia & histologia , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Humanos , Análise Numérica Assistida por Computador , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
13.
Cerebellum ; 15(1): 21-25, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26521073

RESUMO

Magnetic resonance imaging (MRI) of the brain is of high interest for diagnosing and understanding degenerative ataxias. Here, we present state-of-the-art MRI methods to characterize structural alterations of the cerebellum and introduce initial experiments to show abnormalities in the cerebellar nuclei. Clinically, T1-weighted MR images are used to assess atrophy of the cerebellar cortex, the brainstem, and the spinal cord, whereas T2-weighted and PD-weighted images are typically employed to depict potential white matter lesions that may be associated with certain types of ataxias. More recently, attention has also focused on the characterization of the cerebellar nuclei, which are discernible on spatially highly resolved iron-sensitive MR images due to their relatively high iron content, including T2 (*)-weighted images, susceptibility-weighted images (SWI), effective transverse relaxation rate (R2 (*)) maps, and quantitative susceptibility maps (QSM). Among these iron-sensitive techniques, QSM reveals the best contrast between cerebellar nuclei and their surroundings. In particular, the gyrification of the dentate nuclei is prominently depicted, even at the clinically widely available field strength of 3 T. The linear relationship between magnetic susceptibility and local iron content allows for determination of iron deposition in cerebellar nuclei non-invasively. The increased signal-to-noise ratio of ultrahigh-field MRI (B0 ≥ 7 T) and advances in spatial normalization methods enable functional MRI (fMRI) at the level of the cerebellar cortex and cerebellar nuclei. Data from initial fMRI studies are presented in three common forms of hereditary ataxias (Friedreich's ataxia, spinocerebellar ataxia type 3, and spinocerebellar ataxia type 6). Characteristic changes in the fMRI signal are discussed in the light of histopathological data and current knowledge of the underlying physiology of the fMRI signal in the cerebellum.


Assuntos
Ataxia Cerebelar/patologia , Cerebelo/irrigação sanguínea , Cerebelo/patologia , Imageamento por Ressonância Magnética , Humanos , Processamento de Imagem Assistida por Computador , Oxigênio/sangue
14.
Magn Reson Med ; 73(2): 851-6, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24590869

RESUMO

PURPOSE: To recover local phase contrast at the edges of the brain (e.g., cortex), where it is otherwise unavailable with the conventional form of the technique sophisticated harmonic artifact reduction for phase data (SHARP). METHODS: A harmonic potential field, such as the magnetic "background" field, is an analytic field and can thus be represented by a convergent power series. Using SHARP to obtain an initial estimate of the harmonic background field over a reduced inner portion of the brain, a three-dimensional Taylor expansion was performed to extend field coverage to the brain edges. The method, called Extended-SHARP, was quantitatively assessed through a numerical field-forward simulation and qualitatively demonstrated in vivo. RESULTS: Using a typical spherical kernel (6 mm radius), Extended-SHARP recovered on average 26% more in vivo brain volume than SHARP. When applied to the numerical model, local field contrast around an otherwise lost edge source was recovered, with the resulting error comparable to that of conventional SHARP. CONCLUSION: The lost field values near the edges of the brain can be recovered through an easily implemented adaptation to conventional SHARP.


Assuntos
Algoritmos , Artefatos , Encéfalo/anatomia & histologia , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Reconhecimento Automatizado de Padrão/métodos , Inteligência Artificial , Humanos , Aumento da Imagem/métodos , Imageamento Tridimensional/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
15.
Front Neurosci ; 18: 1366165, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529264

RESUMO

Quantitative susceptibility mapping (QSM) has attracted considerable interest for tissue characterization (e.g., iron and calcium accumulation, myelination, venous vasculature) in the human brain and relies on extensive data processing of gradient-echo MRI phase images. While deep learning-based field-to-susceptibility inversion has shown great potential, the acquisition parameters applied in clinical settings such as image resolution or image orientation with respect to the magnetic field have not been fully accounted for. Furthermore, the lack of comprehensive training data covering a wide range of acquisition parameters further limits the current QSM deep learning approaches. Here, we propose the integration of a priori information of imaging parameters into convolutional neural networks with our approach, adaptive convolution, that learns the mapping between the additional presented information (acquisition parameters) and the changes in the phase images associated with these varying acquisition parameters. By associating a-priori information with the network parameters itself, the optimal set of convolution weights is selected based on data-specific attributes, leading to generalizability towards changes in acquisition parameters. Moreover, we demonstrate the feasibility of pre-training on synthetic data and transfer learning to clinical brain data to achieve substantial improvements in the computation of susceptibility maps. The adaptive convolution 3D U-Net demonstrated generalizability in acquisition parameters on synthetic and in-vivo data and outperformed models lacking adaptive convolution or transfer learning. Further experiments demonstrate the impact of the side information on the adaptive model and assessed susceptibility map computation on simulated pathologic data sets and measured phase data.

16.
Rofo ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38479412

RESUMO

BACKGROUND: There is a significant shortage of radiographers in Germany and this shortage is expected to increase. Thus, it is becoming increasingly difficult for radiological facilities to adequately provide their services for the required period of time. Teleradiology has already been established for electronic transmission of diagnostic radiographic imaging examinations between two geographical locations for diagnostic reporting. Recently, the concept of teleoperating radiological devices has become increasingly attractive. METHOD: We examined the potential of teleoperating magnetic resonance imaging (MRI) in radiological facilities within the German regulatory framework in order to address the shortage of qualified personnel. To this end, we are introducing the concept of remote scanning, the structural foundations, the technical requirements associated with it, as well as the legal and educational qualifications of the relevant professional groups. Furthermore, suggestions regarding nomenclature and necessary standard operating procedures to efficiently integrate teleoperation into a clinical workflow adhering to high patient safety standards are provided. RESULTS: Companies provide technical solutions or even experienced radiographers as a service on demand for teleoperating radiological imaging devices remotely from a distance. There should be a comprehensive on-site strategy to effectively embed remote scanning into clinics. Local information technology and data security institutions should be involved in implementation. In order to guarantee that the remote operation workflow is able to provide health care services in line with regulative and legal standards, it is essential to implement standardized personal and institutional training, certifications, and accreditation procedures. Standard operating procedures (SOPs) and checklists for the involved staff, which are adapted to the local workflow in the participating facilities, are beneficial. CONCLUSION: Remote MRI scanning is an evolving technology that further expands the concept of teleradiology to include teleoperations and provides flexibility with respect to the staffing of MRI operators. Careful consideration and dedicated expertise of all involved parties are required to ensure patient safety, meet regulations, and successfully integrate teleoperations into clinics. KEY POINTS: · Remote MRI scanning expands the concept of teleradiology.. · Remote scanning provides flexibility regarding the staffing of MRI operators.. · IT and data security institutions should be involved when implementing remote scanning.. · Comprehensible SOPs and checklists should be established for remote MRI scanning.. · Radiation protection legislation does not allow purely remote CT scanning..

17.
Neuroimage ; 65: 299-314, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23036448

RESUMO

Quantitative magnetic susceptibility mapping (QSM) has recently been introduced to provide a novel quantitative and local MRI contrast. However, the anatomical contrast represented by in vivo susceptibility maps has not yet been compared systematically and comprehensively with gradient (recalled) echo (GRE) magnitude, frequency, and R(2)(*) images. Therefore, this study compares high-resolution quantitative susceptibility maps with conventional GRE imaging approaches (magnitude, frequency, R(2)(*)) in healthy individuals at 7 T with respect to anatomic tissue contrast. Volumes-of-interest were analyzed in deep and cortical gray matter (GM) as well as in white matter (WM) on R(2)(*) and susceptibility maps. High-resolution magnetic susceptibility maps of the human brain exhibited superb contrast that allowed the identification of substructures of the thalamus, midbrain and basal ganglia, as well as of the cerebral cortex. These were consistent with histology but not generally visible on magnitude, frequency or R(2)(*)-maps. Common target structures for deep brain stimulation, including substantia nigra pars reticulata, ventral intermediate nucleus, subthalamic nucleus, and the substructure of the internal globus pallidus, were clearly distinguishable from surrounding tissue on magnetic susceptibility maps. The laminar substructure of the cortical GM differed depending on the anatomical region, i.e., a cortical layer with increased magnetic susceptibility, corresponding to the Stria of Gennari, was found in the GM of the primary visual cortex, V1, whereas a layer with reduced magnetic susceptibility was observed in the GM of the temporal cortex. Both magnetic susceptibility and R(2)(*) values differed substantially in cortical GM depending on the anatomic regions. Regression analysis between magnetic susceptibility and R(2)(*) values of WM and GM structures suggested that variations in myelin content cause the overall contrast between gray and white matter on susceptibility maps and that both R(2)(*) and susceptibility values provide linear measures for iron content in GM. In conclusion, quantitative magnetic susceptibility mapping provides a non-invasive and spatially specific contrast that opens the door to the assessment of diseases characterized by variation in iron and/or myelin concentrations. Its ability to reflect anatomy of deep GM structures with superb delineation may be useful for neurosurgical applications.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/anatomia & histologia , Imageamento por Ressonância Magnética/métodos , Humanos , Interpretação de Imagem Assistida por Computador/métodos
18.
Magn Reson Med ; 69(6): 1582-94, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22791625

RESUMO

Magnetic susceptibility is an intrinsic tissue property that recently became measureable in vivo by a magnetic-resonance based technique called quantitative susceptibility mapping (QSM). Although QSM may be performed without additional acquisition time, for example, in the course of the well-established susceptibility weighted imaging, the applicability of QSM is currently hampered by the numerical complexity and computational cost associated with the reconstruction procedure. This work introduces a novel QSM framework called superfast dipole inversion which allows rapid online reconstruction of susceptibility maps from wrapped raw gradient-echo phase data. The algorithm relies on the extension and combination of several recent algorithms involving the precalculation of convolution kernels and the correction of inversion artifacts. Reconstruction of three-dimensional high resolution susceptibility maps of the human brain was achieved with superfast dipole inversion in less than 20 s on a conventional workstation computer. Thus, superfast dipole inversion opens the door to an implementation of QSM on MR scanner hardware as well as to the routine reconstruction of large cohorts of datasets.


Assuntos
Algoritmos , Encéfalo/anatomia & histologia , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Adulto , Sistemas Computacionais , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Sistemas On-Line , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
19.
Clin Hemorheol Microcirc ; 83(4): 421-429, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36846994

RESUMO

BACKGROUND/OBJECTIVE: Oral malformations of the tongue are exceedingly rare. The aim of this study was to evaluate the effectiveness of individualized treatment for patients with vascular malformations of the tongue. METHODS: This retrospective study is based on a consecutive local registry at a tertiary care Interdisciplinary Center for Vascular Anomalies. Patients with vascular malformations of the tongue were included. Indications for therapy of the vascular malformation were macroglossia with the impossibility to close the mouth, bleeding, recurrent infection and dysphagia. Size regression of the malformation (volume measurement) and symptom improvement were investigated. RESULTS: Out of 971 consecutive patients with vascular malformations, 16 patients suffered from a vascular malformation of the tongue. Twelve patients had slow-flow malformations and 4 fast-flow malformations. Indications for interventions were bleeding (4/16, 25%), macroglossia (6/16, 37.5%), and recurrent infections (4/16, 25%). For two patients (2/16, 12.5%), there was no indication for intervention due to absence of symptoms. Four patients received sclerotherapy, 7 patients Bleomycin-electrosclerotherapy (BEST) and 3 patients embolization. Median follow-up was 16 months (IQR 7-35.5). In all patients, symptoms had decreased after two interventions at a median (IQR 1-3.75). Volume reduction of the malformation of the tongue was 13.3% (from median 27.9 cm3 to median 24.2 cm3, p = 0.0039), and even more pronounced when considering only patients with BEST (from 86 cm3 to 59.1 cm3, p = 0.001). CONCLUSION: Symptoms of vascular malformations of the tongue are improved after a median of two interventions with significantly increased volume reduction after Bleomycin-electrosclerotherapy.


Assuntos
Macroglossia , Malformações Vasculares , Humanos , Macroglossia/induzido quimicamente , Estudos Retrospectivos , Resultado do Tratamento , Língua , Malformações Vasculares/terapia , Bleomicina/uso terapêutico , Bleomicina/efeitos adversos
20.
Rofo ; 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37995735

RESUMO

BACKGROUND: With the availability of MRI sequences with ultrashort echo times (UTE sequences), a signal can be gained from tissue, which was formerly only indirectly accessible. While already extensively employed in various research settings, the widespread transition of UTE imaging to clinical practice is just starting. METHODS: Based on a systematic literature search as well as knowledge gained through annual participation in conferences dedicated to advances in MRI, this review aims to give a brief overview of technical considerations and challenges of UTE imaging and summarizes the major areas of application of UTE imaging. RESULTS: UTE is already employed in clinical practice for structural lung imaging as well as the characterization of tissue composition and its alterations in selected musculoskeletal, cardiovascular, or neurodegenerative diseases. In specific contexts it can replace CT examinations with ionizing radiation and is especially attractive for pediatric patients and longitudinal monitoring of disease progression and treatment. CONCLUSION: UTE imaging provides an interesting and very valuable tool for various clinical purposes and promises a multitude of new insights into tissue properties. While some challenges remain, ongoing adoption in the clinical routine can be expected, as UTE approaches provide a new contrast and capture a signal in tissue formerly invisible on MR imaging. KEY POINTS: · UTE imaging gains relevance in clinical settings. · UTE imaging is employed for the characterization of tissue composition and its alterations in selected musculoskeletal, cardiovascular, or neurodegenerative diseases. · UTE imaging is employed in the clinical routine for structural lung imaging. · UTE imaging promises a multitude of new insights into tissue properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA