Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Med Lav ; 109(4): 285-296, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30168501

RESUMO

BACKGROUND: It is recognized that engineering control measures are needed to reduce occupational exposure to engineered nanomaterials (NMs): of these, fume hoods are among the most widespread collective protection equipment used while handling NMs in occupational settings.  It is known that in some circumstances, handling NMs in fume hoods can result in a significant release of NMs. OBJECTIVE: To assess the effectiveness of fume hoods in reducing exposure while handling graphene nanoplatelets and to define the conditions that result in a lower dispersion of particles and thus less operator exposure. METHODS: An experimental protocol was established to monitor the variations of airborne particle concentrations while handling graphene in fume hoods (transferring and pouring). The measurement locations were at the laboratory, inside the hood and at operator's breathing zone. Handling tasks were performed under different operating conditions: the variable factors included hood face velocity and sash height. RESULTS: Results of this study indicate that the handling of graphene nanoplatelets may pose a potential risk of contamination of the work environment and hence exposure of the involved operators, if adequate control measures are not taken. In fact, when inadequate or not sufficiently cautionary operational conditions were utilized, non-negligible increases in airborne graphene particle concentrations during the nanomaterial manipulation phases were observed. CONCLUSIONS: Some operating conditions (e.g., face velocity, sash height) can be adjusted to avoid relevant personal exposure conditions and contamination of the work environment by NMs, thus ensuring safer conditions.


Assuntos
Poluentes Ocupacionais do Ar , Grafite , Exposição por Inalação/prevenção & controle , Exposição Ocupacional/prevenção & controle , Dispositivos de Proteção Respiratória , Poluentes Ocupacionais do Ar/análise , Grafite/análise , Humanos , Nanopartículas/análise
2.
Environ Res ; 155: 228-234, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28231550

RESUMO

BACKGROUND: Extracellular vesicles (EVs) represent a plausible molecular mechanism linking particulate matter (PM) inhalation to its systemic effects. Microvesicles (MVs) are released from many cell types in response to various stimuli. Increased body mass index (BMI) could modify the response to PM exposure due to enhanced PM uptake and/or an underlying pro-oxidative state. We investigated the relationship between EV release and PM10/PM2.5 exposure in a cohort of 51 volunteers. Subjects were stratified based on their BMI to evaluate whether overweight BMI is a determinant of hypersusceptibility to PM effects. RESULTS: Exposure to PM10/PM2.5 was assessed with a personal sampler worn for 24hours before plasma collection and confirmed with monitoring station data. Size and cellular origin of plasma EVs were characterized by Nanosight analysis and flow cytometry, respectively. Multivariate regression models were run after log-transformation, stratifying subjects based on BMI (≥ or <25kg/m2). PM exposure resulted in increased release of EVs, with the maximum observed effect for endothelial MVs. For PM10 and PM2.5, the adjusted geometric mean ratio and 95% confidence interval were 3.47 (1.30, 9.27) and 3.14 (1.23, 8.02), respectively. Compared to those in normal subjects, PM-induced EV alterations in overweight subjects were more pronounced, with visibly effect in all MV subtypes, particularly endothelial MVs. CONCLUSIONS: Our findings emphasize the role of EV release after PM exposure and the susceptibility of overweight subjects. Larger studies with accurate exposure assessment and complete EVs characterization/content analysis, could further clarify the molecular mechanism responsible for PM effects and of hypersusceptibility of overweight subjects.


Assuntos
Poluentes Atmosféricos/análise , Vesículas Extracelulares , Sobrepeso/sangue , Material Particulado/análise , Adulto , Idoso , Monitoramento Ambiental , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
3.
Int J Hyg Environ Health ; 222(1): 76-83, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30150162

RESUMO

An experimental probabilistic approach for health risk assessment was applied for graphene nanoplatelets (GNPs). The hazard assessment indicated a low level of toxicity for the GNPs. The benchmark dose method, based on sub-chronic and chronic inhalation exposure studies, was used to quantify a guidance value (BMCh) for occupational inhalation exposure to GNPs, expressed as a lognormal distribution with a geometric mean ±â€¯geometric standard deviation of 0.212 ±â€¯7.79 mg/m3 and 9.37 × 104 ±â€¯7.6 particle/cm3. Exposure scenarios (ES) were defined based on the scientific literature for large-scale production (ES1) and manufacturing (ES2) of GNPs; a third ES, concerning in-lab handling of GNPs (ES3) was based on results of experiments performed for this study. A probability distribution function was then assumed for each ES. The risk magnitude was calculated using a risk characterization ratio (RCR), defined as the ratio of the exposure distributions and the BMCh distribution. All three ES resulted in RCR distributions ≥1 (i.e. risk present); however, none of the ES had a statistically significant level of risk at a 95% confidence interval. A sensitivity analysis indicated that ∼75% of the variation in the RCR distributions was due to uncertainties in the BMCh calculation.


Assuntos
Grafite/toxicidade , Nanoestruturas/efeitos adversos , Exposição Ocupacional/efeitos adversos , Relação Dose-Resposta a Droga , Humanos , Modelos Estatísticos , Medição de Risco
4.
Environ Int ; 123: 407-416, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30622065

RESUMO

Airborne particulate matter (PM) concentrations inside vehicle cabins are often extremely high compared to background levels. The present study was motivated by the fact that in the last few decades, the implementation of new emission standards has led to the reduction of vehicle particle emissions. This study addresses for the first time the relationship between leading vehicle (LV) emissions and in-cabin PM exposure levels in the immediately following vehicle (henceforth called the study vehicle - SV), with particular emphasis on the role of the LV's emission reduction technologies (e.g., diesel particulate filter-DPF) as an effective risk management measure. The study was performed using an instrumented study vehicle (always to be considered as the following vehicle) on a 26-km fixed route where 10 repeated tests were conducted during 60-minute trips. On-line monitoring of the fine 0.3-1 µm and 1-2.5 µm (PM0.3-1 and PM1-2.5) and ultra-fine particle (UFP) concentrations was performed inside the SV's car cabin with fixed ventilation settings (i.e., windows closed, air conditioning off, and recirculation fan off). Simultaneously, the license plate numbers of the LVs along the route were recorded to retrieve information pertaining to their fuel type and Euro emission standard category. The results clearly showed that the in-cabin PM levels were significantly affected by the LV's Euro emission standard. Regarding petrol-fuelled LVs, the median in-cabin particle exposure levels were statistically lower (e.g., -34% for PM0.3-1) when following vehicles with stricter emission standards (in particular, Euro 6) than when following a low-emission standard vehicle (i.e., Euro 0-2). Concerning diesel-fuelled LVs, a strong and significant decrease in the in-cabin median exposure levels (up to -62%, -44%, and -48% for UFPs, PM0.3-1, and PM1-2.5, respectively) was observed for recent-emission standards LVs (i.e., Euro 5-6) with respect to older-emission standard LVs (i.e., Euro 0-4). A specific analysis revealed that the in-cabin median exposure concentrations of PM were highly and significantly reduced by DPF-equipped LVs. For UFPs, this resulted in a 47% reduction compared to diesel-fuelled (non-DPF) LVs. For PM0.3-1, an approximate 80% reduction was observed compared to both petrol-fuelled and diesel-fuelled (non-DPF) LVs. For PM1-2.5, an approximate 38% reduction was observed compared to petrol-fuelled LVs and a 46% reduction compared to non-DPF LVs.


Assuntos
Poluição do Ar/análise , Material Particulado/análise , Emissões de Veículos/análise , Poluentes Atmosféricos , Monitoramento Ambiental , Gasolina , Humanos , Tamanho da Partícula
5.
Artigo em Inglês | MEDLINE | ID: mdl-28805684

RESUMO

Air quality has a huge impact on different aspects of life quality, and for this reason, air quality monitoring is required by national and international regulations. Technical and procedural limitations of traditional fixed-site stations for monitoring or sampling of air pollutants are also well-known. Recently, a different type of miniaturized monitors has been developed. These monitors, due to their characteristics (e.g., low cost, small size, high portability) are becoming increasingly important for individual exposure assessment, especially since this kind of instrument can provide measurements at high spatial and temporal resolution, which is a notable advantage when approaching assessment of exposure to environmental contaminants. The aim of this study is indeed to provide information regarding current knowledge regarding the use of miniaturized air pollutant sensors. A systematic review was performed to identify original articles: a literature search was carried out using an appropriate query for the search of papers across three different databases, and the papers were selected using inclusion/exclusion criteria. The reviewed articles showed that miniaturized sensors are particularly versatile and could be applied in studies with different experimental designs, helping to provide a significant enhancement to exposure assessment, even though studies regarding their performance are still sparse.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/instrumentação , Material Particulado/análise , Humanos , Miniaturização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA