Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Renal Physiol ; 324(5): F472-F482, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36995924

RESUMO

Acute kidney injury (AKI) is common in surgical and critically ill patients. This study examined whether pretreatment with a novel Toll-like receptor 4 agonist attenuated ischemia-reperfusion injury (IRI)-induced AKI (IRI-AKI). We performed a blinded, randomized-controlled study in mice pretreated with 3-deacyl 6-acyl phosphorylated hexaacyl disaccharide (PHAD), a synthetic Toll-like receptor 4 agonist. Two cohorts of male BALB/c mice received intravenous vehicle or PHAD (2, 20, or 200 µg) at 48 and 24 h before unilateral renal pedicle clamping and simultaneous contralateral nephrectomy. A separate cohort of mice received intravenous vehicle or 200 µg PHAD followed by bilateral IRI-AKI. Mice were monitored for evidence of kidney injury for 3 days postreperfusion. Kidney function was assessed by serum blood urea nitrogen and creatinine measurements. Kidney tubular injury was assessed by semiquantitative analysis of tubular morphology on periodic acid-Schiff (PAS)-stained kidney sections and by kidney mRNA quantification of injury [neutrophil gelatinase-associated lipocalin (Ngal), kidney injury molecule-1 (Kim-1), and heme oxygenase-1 (Ho-1)] and inflammation [interleukin-6 (IL-6), interleukin-1ß (IL-1ß), and tumor necrosis factor-α (Tnf-α)] using quantitative RT-PCR. Immunohistochemistry was used to quantify proximal tubular cell injury and renal macrophages by quantifying the areas stained with Kim-1 and F4/80 antibodies, respectively, and TUNEL staining to detect the apoptotic nuclei. PHAD pretreatment yielded dose-dependent kidney function preservation after unilateral IRI-AKI. Histological injury, apoptosis, Kim-1 staining, and Ngal mRNA were lower in PHAD-treated mice and IL-1ß mRNA was higher in PHAD-treated mice. Similar pretreatment protection was noted with 200 mg PHAD after bilateral IRI-AKI, with significantly reduced Kim-1 immunostaining in the outer medulla of mice treated with PHAD after bilateral IRI-AKI. In conclusion, PHAD pretreatment leads to dose-dependent protection from renal injury after unilateral and bilateral IRI-AKI in mice.NEW & NOTEWORTHY Pretreatment with 3-deacyl 6-acyl phosphorylated hexaacyl disaccharide; a novel synthetic Toll-like receptor 4 agonist, preserves kidney function during ischemia-reperfusion injury-induced acute kidney injury.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Receptor 4 Toll-Like , Animais , Masculino , Camundongos , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/patologia , Injúria Renal Aguda/prevenção & controle , Rim/patologia , Lipocalina-2 , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/patologia , RNA Mensageiro , Receptor 4 Toll-Like/agonistas
2.
Anesth Analg ; 137(5): 996-1006, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37678264

RESUMO

BACKGROUND: Renal ischemia and reperfusion (IR) contribute to perioperative acute kidney injury, and oxygen is a key regulator of this process. We hypothesized that oxygen administration during surgery and renal IR would impact postoperative kidney function and injury in mice. METHODS: Mice were anesthetized, intubated, and mechanically ventilated with a fraction of inspired oxygen (F io2 ) 0.10 (hypoxia), 0.21 (normoxia), 0.60 (moderate hyperoxia), or 1.00 (severe hyperoxia) during 67 minutes of renal IR or sham IR surgery. Additional mice were treated before IR or sham IR surgery with 50 mg/kg tempol, a superoxide scavenger. At 24 hours, mice were sacrificed, and blood and kidney collected. We assessed and compared kidney function and injury across groups by measuring blood urea nitrogen (BUN, primary end point), renal histological injury, renal expression of neutrophil gelatinase-associated lipocalin (NGAL), and renal heme oxygenase 1 ( Ho-1 ), peroxisome proliferator-activated receptor gamma coactivator 1-α ( Pgc1-α ), and glutathione peroxidase 4 ( Gpx-4 ) transcripts, to explore potential mechanisms of any effect of oxygen. RESULTS: Hyperoxia and hypoxia during renal IR surgery decreased renal function and increased kidney injury compared to normoxia. Baseline median (interquartile range) BUN was 22.2 mg/dL (18.4-26.0), and 24 hours after IR surgery, BUN was 17.5 mg/dL (95% confidence interval [CI], 1.3-38.4; P = .034) higher in moderate hyperoxia-treated animals, 51.8 mg/dL (95% CI, 24.9-74.8; P < .001) higher in severe hyperoxia-treated animals, and 64.9 mg/dL (95% CI, 41.2-80.3; P < .001) higher in hypoxia-treated animals compared to animals treated with normoxia ( P < .001, overall effect of hyperoxia). Hyperoxia-induced injury, but not hypoxia-induced injury, was attenuated by pretreatment with tempol. Histological injury scores, renal NGAL staining, and renal transcription of Ho-1 and suppression of Pgc1- α followed the same pattern as BUN, in relation to the effects of oxygen treatment. CONCLUSIONS: In this controlled preclinical study of oxygen treatment during renal IR surgery, hyperoxia and hypoxia impaired renal function, increased renal injury, and impacted expression of genes that affect mitochondrial biogenesis and antioxidant response. These results might have implications for patients during surgery when high concentrations of oxygen are frequently administered, especially in cases involving renal IR.

3.
NMR Biomed ; 35(10): e4786, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35704387

RESUMO

Tubular atrophy and fibrosis are pathological changes that determine the prognosis of kidney disease induced by acute kidney injury (AKI). We aimed to evaluate multiple magnetic resonance imaging (MRI) parameters, including pool size ratio (PSR) from quantitative magnetization transfer, relaxation rates, and measures from spin-lock imaging ( R 1 ρ and S ρ ), for assessing the pathological changes associated with AKI-induced kidney disease. Eight-week-old male C57BL/6 J mice first underwent unilateral ischemia reperfusion injury (IRI) induced by reperfusion after 45 min of ischemia. They were imaged using a 7T MRI system 56 days after the injury. Paraffin tissue sections were stained using Masson trichrome and picrosirius red to identify histopathological changes such as tubular atrophy and fibrosis. Histology detected extensive tubular atrophy and moderate fibrosis in the cortex and outer stripe of the outer medulla (CR + OSOM) and more prominent fibrosis in the inner stripe of the outer medulla (ISOM) of IRI kidneys. In the CR + OSOM region, evident decreases in PSR, R 1 , R 2 , R 1 ρ , and S ρ showed in IRI compared with contralateral kidneys, with PSR and S ρ exhibiting the most significant changes. In addition, the exchange parameter S ρ dropped by the largest degree among all the MRI parameters, while R 2 * increased significantly. In the ISOM of IRI kidneys, PSR increased while S ρ kept decreasing. R 2 , R 1 ρ , and R 2 * all increased due to more severe fibrosis in this region. Among MRI measures, PSR and R 1 ρ showed the highest detectability of renal changes no matter whether tubular atrophy or fibrosis dominated. R 2 * and S ρ could be more specific to a single pathological event than other MRI measures because only R 2 * increased and S ρ decreased consistently when either fibrosis or tubular atrophy dominated, and their correlations with fibrosis scores were higher than other MRI measures. Multiparametric MRI may enable a more comprehensive analysis of histopathological changes following AKI.


Assuntos
Injúria Renal Aguda , Imageamento por Ressonância Magnética Multiparamétrica , Traumatismo por Reperfusão , Injúria Renal Aguda/diagnóstico por imagem , Injúria Renal Aguda/etiologia , Animais , Atrofia/complicações , Atrofia/patologia , Fibrose , Isquemia/patologia , Rim/diagnóstico por imagem , Rim/patologia , Imageamento por Ressonância Magnética/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reperfusão/efeitos adversos , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/diagnóstico por imagem , Traumatismo por Reperfusão/patologia
4.
Am J Physiol Renal Physiol ; 317(5): F1383-F1397, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31509009

RESUMO

Acute kidney injury (AKI) is a strong independent predictor of mortality and often results in incomplete recovery of renal function, leading to progressive chronic kidney disease (CKD). Many clinical trials have been conducted on the basis of promising preclinical data, but no therapeutic interventions have been shown to improve long-term outcomes after AKI. This is partly due to the failure of preclinical studies to accurately model clinically relevant injury and long-term outcomes on CKD progression. Here, we evaluated the long-term effects of AKI on CKD progression in three animal models reflecting diverse etiologies of AKI: repeat-dose cisplatin, rhabdomyolysis, and ischemia-reperfusion injury. Using transdermal measurement of glomerular filtration rate as a clinically relevant measure of kidney function and quantification of peritubular capillary density to measure capillary rarefaction, we showed that repeat-dose cisplatin caused capillary rarefaction and decreased renal function in mice without a significant increase in interstitial fibrosis, whereas rhabdomyolysis-induced AKI led to severe interstitial fibrosis, but renal function and peritubular capillary density were preserved. Furthermore, long-term experiments in mice with unilateral ischemia-reperfusion injury showed that restoration of renal function 12 wk after a contralateral nephrectomy was associated with increasing fibrosis, but a reversal of capillary rarefaction was seen at 4 wk. These data demonstrate that clear dissociation between kidney function and fibrosis in these models of AKI to CKD progression and suggest that peritubular capillary rarefaction is more strongly associated with CKD progression than renal fibrosis.


Assuntos
Injúria Renal Aguda/etiologia , Cisplatino/toxicidade , Rarefação Microvascular/patologia , Insuficiência Renal Crônica/patologia , Traumatismo por Reperfusão/complicações , Rabdomiólise/complicações , Animais , Antineoplásicos/toxicidade , Fibrose/etiologia , Rim/efeitos dos fármacos , Rim/patologia , Masculino , Camundongos , Rarefação Microvascular/etiologia
5.
Am J Physiol Renal Physiol ; 317(4): F1068-F1080, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31411074

RESUMO

Severe acute kidney injury has a high mortality and is a risk factor for progressive chronic kidney disease. None of the potential therapies that have been identified in preclinical studies have successfully improved clinical outcomes. This failure is partly because animal models rarely reflect the complexity of human disease: most preclinical studies are short term and are commonly performed in healthy, young, male mice. Therapies that are effective in preclinical models that share common clinical features seen in patients with acute kidney injury, including genetic diversity, different sexes, and comorbidities, and evaluate long-term outcomes are more likely to predict success in the clinic. Here, we evaluated susceptibility to chronic kidney disease after ischemia-reperfusion injury with delayed nephrectomy by monitoring long-term functional and histological responses to injury. We defined conditions required to induce long-term postinjury renal dysfunction and fibrosis without increased mortality in a reproducible way and evaluate effect of mouse strains, sexes, and preexisting diabetes on these responses.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/etiologia , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Nefropatias Diabéticas/complicações , Nefropatias Diabéticas/tratamento farmacológico , Modelos Animais de Doenças , Feminino , Fibrose , Testes de Função Renal , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Nefrectomia , Caracteres Sexuais , Especificidade da Espécie
6.
J Clin Microbiol ; 53(5): 1473-83, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25673793

RESUMO

The treatment of drug-resistant tuberculosis cases is challenging, as drug options are limited, and the existing diagnostics are inadequate. Whole-genome sequencing (WGS) has been used in a clinical setting to investigate six cases of suspected extensively drug-resistant Mycobacterium tuberculosis (XDR-TB) encountered at a London teaching hospital between 2008 and 2014. Sixteen isolates from six suspected XDR-TB cases were sequenced; five cases were analyzed in a clinically relevant time frame, with one case sequenced retrospectively. WGS identified mutations in the M. tuberculosis genes associated with antibiotic resistance that are likely to be responsible for the phenotypic resistance. Thus, an evidence base was developed to inform the clinical decisions made around antibiotic treatment over prolonged periods. All strains in this study belonged to the East Asian (Beijing) lineage, and the strain relatedness was consistent with the expectations from the case histories, confirming one contact transmission event. We demonstrate that WGS data can be produced in a clinically relevant time scale some weeks before drug sensitivity testing (DST) data are available, and they actively help clinical decision-making through the assessment of whether an isolate (i) has a particular resistance mutation where there are absent or contradictory DST results, (ii) has no further resistance markers and therefore is unlikely to be XDR, or (iii) is identical to an isolate of known resistance (i.e., a likely transmission event). A small number of discrepancies between the genotypic predictions and phenotypic DST results are discussed in the wider context of the interpretation and reporting of WGS results.


Assuntos
Técnicas Bacteriológicas/métodos , Tuberculose Extensivamente Resistente a Medicamentos/diagnóstico , Genoma Bacteriano , Técnicas de Diagnóstico Molecular/métodos , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Análise de Sequência de DNA/métodos , Genes Bacterianos , Genótipo , Hospitais de Ensino , Humanos , Londres , Mutação , Mycobacterium tuberculosis/isolamento & purificação , Fatores de Tempo
7.
JCI Insight ; 9(6)2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38516886

RESUMO

Kidney tubules use fatty acid oxidation (FAO) to support their high energetic requirements. Carnitine palmitoyltransferase 1A (CPT1A) is the rate-limiting enzyme for FAO, and it is necessary to transport long-chain fatty acids into mitochondria. To define the role of tubular CPT1A in aging and injury, we generated mice with tubule-specific deletion of Cpt1a (Cpt1aCKO mice), and the mice were either aged for 2 years or injured by aristolochic acid or unilateral ureteral obstruction. Surprisingly, Cpt1aCKO mice had no significant differences in kidney function or fibrosis compared with wild-type mice after aging or chronic injury. Primary tubule cells from aged Cpt1aCKO mice had a modest decrease in palmitate oxidation but retained the ability to metabolize long-chain fatty acids. Very-long-chain fatty acids, exclusively oxidized by peroxisomes, were reduced in kidneys lacking tubular CPT1A, consistent with increased peroxisomal activity. Single-nuclear RNA-Seq showed significantly increased expression of peroxisomal FAO enzymes in proximal tubules of mice lacking tubular CPT1A. These data suggest that peroxisomal FAO may compensate in the absence of CPT1A, and future genetic studies are needed to confirm the role of peroxisomal ß-oxidation when mitochondrial FAO is impaired.


Assuntos
Carnitina O-Palmitoiltransferase , Rim , Animais , Camundongos , Envelhecimento/genética , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Ácidos Graxos/metabolismo , Rim/metabolismo , Rim/patologia , Túbulos Renais/metabolismo
8.
JCI Insight ; 8(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37698919

RESUMO

Retinoic acid receptor (RAR) signaling is essential for mammalian kidney development but, in the adult kidney, is restricted to occasional collecting duct epithelial cells. We now show that there is widespread reactivation of RAR signaling in proximal tubular epithelial cells (PTECs) in human sepsis-associated acute kidney injury (AKI) and in mouse models of AKI. Genetic inhibition of RAR signaling in PTECs protected against experimental AKI but was unexpectedly associated with increased expression of the PTEC injury marker Kim1. However, the protective effects of inhibiting PTEC RAR signaling were associated with increased Kim1-dependent apoptotic cell clearance, or efferocytosis, and this was associated with dedifferentiation, proliferation, and metabolic reprogramming of PTECs. These data demonstrate the functional role that reactivation of RAR signaling plays in regulating PTEC differentiation and function in human and experimental AKI.


Assuntos
Injúria Renal Aguda , Túbulos Renais Proximais , Camundongos , Animais , Humanos , Túbulos Renais Proximais/metabolismo , Tretinoína/farmacologia , Tretinoína/metabolismo , Rim/metabolismo , Injúria Renal Aguda/metabolismo , Células Epiteliais/metabolismo , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA