Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomed Phys Eng Express ; 9(6)2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37651989

RESUMO

Objective. To establish institutional diagnostic reference levels (IDRLs) based on clinical indications (CIs) for three- and four-phase computed tomography urography (CTU).Methods. Volumetric computed tomography dose index (CTDIvol), dose-length product (DLP), patients' demographics, selected CIs like lithiasis, cancer, and other diseases, and protocols' parameters were retrospectively recorded for 198 CTUs conducted on a Toshiba Aquilion Prime 80 scanner. Patients were categorised based on CIs and number of phases. These groups' 75th percentiles of CTDIvoland DLP were proposed as IDRLs. The mean, median and IDRLs were compared with previously published values.Results. For the three-phase protocol, the CTDIvol(mGy) and DLP (mGy.cm) were 22.7/992 for the whole group, 23.4/992 for lithiasis, 22.8/1037 for cancer, and 21.2/981 for other diseases. The corresponding CTDIvol(mGy) and DLP (mGy.cm) values for the four-phase protocol were 28.6/1172, 30.6/1203, 27.3/1077, and 28.7/1252, respectively. A significant difference was found in CTDIvoland DLP between the two protocols, among the phases of three-phase (except cancer) and four-phase protocols (except DLP for other diseases), and in DLP between the second and third phases (except for cancer group). The results are comparable or lower than most studies published in the last decade.Conclusions. The CT technologist must be aware of the critical dose dependence on the scan length and the applied exposure parameters for each phase, according to the patient's clinical background and the corresponding imaging anatomy, which must have been properly targeted by the competent radiologist. When clinically feasible, restricting the number of phases to three instead of four could remarkably reduce the patient's radiation dose. CI-based IDRLs will serve as a baseline for comparison with CTU practice in other hospitals and could contribute to national DRL establishment. The awareness and knowledge of dose levels during CTU will prompt optimisation strategies in CT facilities.


Assuntos
Níveis de Referência de Diagnóstico , Litíase , Humanos , Estudos Retrospectivos , Urografia , Tomografia Computadorizada por Raios X
2.
Med Phys ; 34(5): 1724-33, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17555254

RESUMO

Lu2SiO5: Ce (LSO) scintillator is a relatively new luminescent material which has been successfully applied in positron emission tomography systems. Since it has been recently commercially available in powder form, it could be of value to investigate its performance for use in x-ray projection imaging as both physical and scintillating properties indicate a promising material for such applications. In the present study, a custom and validated Monte Carlo simulation code was used in order to examine the performance of LSO, under diagnostic radiology (mammography and general radiography) conditions. The Monte Carlo code was based on a model using Mie scattering theory for the description of light attenuation. Imaging characteristics, related to image brightness, spatial resolution and noise of LSO screens were predicted using only physical parameters of the phosphor. The overall performance of LSO powder phosphor screens was investigated in terms of the: (i) quantum detection efficiency (ii) emitted K-characteristic radiation (iii) luminescence efficiency (iv) modulation transfer function (v) Swank factor and (vi) zero-frequency detective quantum efficiency [DQE(0)]. Results were compared to the traditional rare-earth Gd2O2S:Tb (GOS) phosphor material. The relative luminescence efficiency of LSO phosphor was found inferior to that of GOS. This is due to the lower intrinsic conversion efficiency of LSO (0.08 instead of 0.15 of GOS) and the relatively high light extinction coefficient mext of this phosphor (0.239 mircom(-1) instead of 0.218 /microm(-1) for GOS). However, the property of increased light extinction combined with the rather sharp angular distribution of scattered light photons (anisotropy factor g=0.624 for LSO instead of 0.494 for GOS) reduce lateral light spreading and improve spatial resolution. In addition, LSO screens were found to exhibit better x-ray absorption as well as higher signal to noise transfer properties in the energy range from 18 keV up to 50.2 keV (e.g. DQE(0)=0.62 at 18 keV and for 34 mg/cm2, instead of 0.58 for GOS). The results indicate that certain optical properties of LSO (optical extinction coefficient, scattering anisotropy factor) combined with the relatively high x-ray coefficients, make this material a promising phosphor which, under appropriate conditions, could be considered for use in x-ray projection imaging detectors.


Assuntos
Cério , Gadolínio/química , Lutécio/química , Compostos de Silício/química , Térbio , Ecrans Intensificadores para Raios X , Medições Luminescentes/métodos , Método de Monte Carlo , Fósforo/química , Contagem de Cintilação
3.
Med Phys ; 33(12): 4502-14, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17278802

RESUMO

The intrinsic phosphor properties are of significant importance for the performance of phosphor screens used in medical imaging systems. In previous analytical-theoretical and Monte Carlo studies on granular phosphor materials, values of optical properties, and light interaction cross sections were found by fitting to experimental data. These values were then employed for the assessment of phosphor screen imaging performance. However, it was found that, depending on the experimental technique and fitting methodology, the optical parameters of a specific phosphor material varied within a wide range of values, i.e., variations of light scattering with respect to light absorption coefficients were often observed for the same phosphor material. In this study, x-ray and light transport within granular phosphor materials was studied by developing a computational model using Monte Carlo methods. The model was based on the intrinsic physical characteristics of the phosphor. Input values required to feed the model can be easily obtained from tabulated data. The complex refractive index was introduced and microscopic probabilities for light interactions were produced, using Mie scattering theory. Model validation was carried out by comparing model results on x-ray and light parameters (x-ray absorption, statistical fluctuations in the x-ray to light conversion process, number of emitted light photons, output light spatial distribution) with previous published experimental data on Gd2O2S: Tb phosphor material (Kodak Min-R screen). Results showed the dependence of the modulation transfer function (MTF) on phosphor grain size and material packing density. It was predicted that granular Gd2O2S: Tb screens of high packing density and small grain size may exhibit considerably better resolution and light emission properties than the conventional Gd2O2S: Tb screens, under similar conditions (x-ray incident energy, screen thickness).


Assuntos
Diagnóstico por Imagem/métodos , Gadolínio/química , Fósforo/química , Ecrans Intensificadores para Raios X , Desenho de Equipamento , Luz , Modelos Estatísticos , Modelos Teóricos , Método de Monte Carlo , Fótons , Intensificação de Imagem Radiográfica , Espalhamento de Radiação , Térbio/química , Raios X
4.
Eur J Radiol ; 85(10): 1689-1694, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27666603

RESUMO

Radiation protection is of particular importance in paediatric radiology. In this study, the influence of increased body mass index (BMI) in radiation dose and associated risk was investigated for paediatric patients aged 5-6.5 years, undergoing chest (64 patients) or abdomen (64 patients) radiography. Patients were categorized into normal and overweight, according to the BMI classification scheme. Entrance surface dose (ESD), organ dose, effective dose (ED) and risk of exposure induced cancer death (REID) were calculated using the Monte Carlo based code PCXMC 2.0. Statistically significant increase in patient radiation dose and REID was obtained for overweight patients as compared to normal ones, in both chest and abdomen examinations (Wilcoxon singed-rank test for paired data, p<0.001). The percentage increase in overweight as compared to normal patients of ESD, organ dose (maximum value), ED and REID was 13.6%, 24.4%, 18.9% and 20.6%, respectively, in case of chest radiographs. Corresponding values in case of abdomen radiographs were 15.0%, 24.7%, 21.8% and 19.8%, respectively. An increased BMI results in increased patient radiation dose in chest and abdomen paediatric radiography.


Assuntos
Índice de Massa Corporal , Pediatria/métodos , Doses de Radiação , Radiografia Abdominal/métodos , Radiografia Torácica/métodos , Fatores Etários , Carga Corporal (Radioterapia) , Criança , Relação Dose-Resposta à Radiação , Feminino , Humanos , Masculino , Método de Monte Carlo , Sobrepeso , Guias de Prática Clínica como Assunto , Reprodutibilidade dos Testes
5.
Spine (Phila Pa 1976) ; 31(23): E884-9; discussioin E890, 2006 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17077725

RESUMO

STUDY DESIGN: Eleven vertebroplasty operations were studied in terms of radiation dose. OBJECTIVE: Doses to patients and staff associated with vertebroplasty were measured. Occupational doses were compared with the annual dose limits, and the effectiveness of the used radiation protection means was estimated. Patient dose was estimated by means of both surface and effective dose, and the radiation-induced risk was evaluated. SUMMARY OF BACKGROUND DATA: Vertebroplasty is a recent minimally invasive technique for the restoration of vertebral body fractures. It involves fluoroscopic exposure, and so, it demands dose measurements for both patient and staff exposed to radiation. METHODS: Thermoluminescent dosimeters (TLDs) were placed on the medical personnel and the effective dose was derived. Slow films were placed to patients' skin to measure entrance surface dose. Furthermore, a Rando phantom loaded with TLDs was irradiated under conditions simulating vertebroplasty, in order to estimate effective dose to the patient. RESULTS: Mean fluoroscopy time was 27.7 minutes. Patient's mean skin dose was 688 mGy, while effective dose was calculated to be 34.45 mGy. It was estimated that the primary operator can perform about 150 vertebroplasty operations annually without exceeding the annual dose constraints, whereas occupational dose can be reduced by 76% using mobile shielding. CONCLUSIONS: Measures have to be taken to reduce patient's skin dose, which, in extreme cases, may be close to deterministic effects threshold. The highest dose rates, recorded during the procedure, were found for primary operator's hands and chest when no shielding was used.


Assuntos
Fluoroscopia , Pessoal de Saúde , Procedimentos Ortopédicos , Pacientes , Radiometria , Coluna Vertebral/cirurgia , Cirurgia Assistida por Computador , Humanos , Procedimentos Cirúrgicos Minimamente Invasivos , Exposição Ocupacional , Imagens de Fantasmas , Doses de Radiação , Proteção Radiológica , Pele/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA