Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Cell Mol Life Sci ; 79(3): 179, 2022 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-35253091

RESUMO

ATP synthases are unique rotatory molecular machines that supply biochemical reactions with adenosine triphosphate (ATP)-the universal "currency", which cells use for synthesis of vital molecules and sustaining life. ATP synthases of F-type (FOF1) are found embedded in bacterial cellular membrane, in thylakoid membranes of chloroplasts, and in mitochondrial inner membranes in eukaryotes. The main functions of ATP synthases are control of the ATP synthesis and transmembrane potential. Although the key subunits of the enzyme remain highly conserved, subunit composition and structural organization of ATP synthases and their assemblies are significantly different. In addition, there are hypotheses that the enzyme might be involved in the formation of the mitochondrial permeability transition pore and play a role in regulation of the cell death processes. Dysfunctions of this enzyme lead to numerous severe disorders with high fatality levels. In our review, we focus on FOF1-structure-based approach towards development of new therapies by using FOF1 structural features inherited by the representatives of this enzyme family from different taxonomy groups. We analyzed and systematized the most relevant information about the structural organization of FOF1 to discuss how this approach might help in the development of new therapies targeting ATP synthases and design tools for cellular bioenergetics control.


Assuntos
Desenho de Fármacos , ATPases Translocadoras de Prótons/metabolismo , Trifosfato de Adenosina/metabolismo , Bactérias/metabolismo , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/classificação , Proteínas de Bactérias/metabolismo , Cloroplastos/metabolismo , Eucariotos/metabolismo , Filogenia , Subunidades Proteicas/metabolismo , ATPases Translocadoras de Prótons/antagonistas & inibidores , ATPases Translocadoras de Prótons/classificação , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo
2.
Int J Mol Sci ; 24(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37445905

RESUMO

F-type ATP synthases play a key role in oxidative and photophosphorylation processes generating adenosine triphosphate (ATP) for most biochemical reactions in living organisms. In contrast to the mitochondrial FOF1-ATP synthases, those of chloroplasts are known to be mostly monomers with approx. 15% fraction of oligomers interacting presumably non-specifically in a thylakoid membrane. To shed light on the nature of this difference we studied interactions of the chloroplast ATP synthases using small-angle X-ray scattering (SAXS) method. Here, we report evidence of I-shaped dimerization of solubilized FOF1-ATP synthases from spinach chloroplasts at different ionic strengths. The structural data were obtained by SAXS and demonstrated dimerization in response to ionic strength. The best model describing SAXS data was two ATP-synthases connected through F1/F1' parts, presumably via their δ-subunits, forming "I" shape dimers. Such I-shaped dimers might possibly connect the neighboring lamellae in thylakoid stacks assuming that the FOF1 monomers comprising such dimers are embedded in parallel opposing stacked thylakoid membrane areas. If this type of dimerization exists in nature, it might be one of the pathways of inhibition of chloroplast FOF1-ATP synthase for preventing ATP hydrolysis in the dark, when ionic strength in plant chloroplasts is rising. Together with a redox switch inserted into a γ-subunit of chloroplast FOF1 and lateral oligomerization, an I-shaped dimerization might comprise a subtle regulatory process of ATP synthesis and stabilize the structure of thylakoid stacks in chloroplasts.


Assuntos
Trifosfato de Adenosina , ATPases Translocadoras de Prótons , ATPases Translocadoras de Prótons/metabolismo , Trifosfato de Adenosina/metabolismo , Espalhamento a Baixo Ângulo , Difração de Raios X , Cloroplastos/metabolismo , Óxido Nítrico Sintase/metabolismo , Polímeros/metabolismo
3.
Biochim Biophys Acta ; 1862(4): 741-753, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26844379

RESUMO

In Parkinson's disease (PD) motor symptoms are not observed until loss of 70% of dopaminergic neurons in substantia nigra (SN), preventing early diagnosis. Mitochondrial dysfunction was indicated in neuropathological process already at early PD stages. Aging and oxidative stress, the main factors in PD pathogenesis, cause membrane stiffening, which could influence functioning of membrane-bound oxidative phosphorylation (OxPhos) complexes (Cxs) in mitochondria. In 6-OHDA rat model, medium-sized dopaminergic lesion was used to study mitochondrial membrane viscosity and changes at the level of OxPhos Cxs and their higher assembled states-supercomplexes (SCxs), during the early degeneration processes and after it. We observed loss of dopaminergic phenotype in SN and decreased dopamine level in striatum (STR) before actual death of neurons in SN. Behavioural deficits induced by lesion were reversed despite progressing neurodegeneration. Along with degeneration process in STR, mitochondrial Cx I performance and amount decreased in almost all forms of SCxs. Also, progressing decrease of Cx IV performance in SCxs (I1III2IV3-1, I1IV2-1) in STR was observed during degeneration. In SN, SCxs containing Cx I increased protein amount and a shifted individual Cx I1 into superassembled states. Importantly, mitochondrial membrane viscosity changed in parallel with altered SCxs performance. We show for the first time changes at the level of mitochondrial membrane viscosity influencing SCxs function after dopaminergic system degeneration. It implicates that altered mitochondrial membrane viscosity could play an important role in regulation of mitochondria functioning and pathomechanisms of PD. The data obtained are also discussed in relation to compensatory processes observed.


Assuntos
Membrana Celular/metabolismo , Neurônios Dopaminérgicos/metabolismo , Mitocôndrias/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Oxidopamina/efeitos adversos , Doença de Parkinson Secundária/metabolismo , Animais , Membrana Celular/patologia , Neurônios Dopaminérgicos/patologia , Masculino , Mitocôndrias/patologia , Proteínas Mitocondriais/metabolismo , Oxidopamina/farmacologia , Doença de Parkinson Secundária/patologia , Ratos , Ratos Wistar
4.
Soft Matter ; 12(5): 1444-51, 2016 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-26646730

RESUMO

The peptide amyloid-ß (Aß) interacts with membranes of cells in the human brain and is associated with Alzheimer's disease (AD). The intercalation of Aß in membranes alters membrane properties, including the structure and lipid dynamics. Any change in the membrane lipid dynamics will affect essential membrane processes, such as energy conversion, signal transduction and amyloid precursor protein (APP) processing, and may result in the observed neurotoxicity associated with the disease. The influence of this peptide on membrane dynamics was studied with quasi-elastic neutron scattering, a technique which allows a wide range of observation times from picoseconds to nanoseconds, over nanometer length scales. The effect of the membrane integral neurotoxic peptide amyloid-ß, residues 22-40, on the in- and out-of-plane lipid dynamics was observed in an oriented DMPC/DMPS bilayer at 15 °C, in its gel phase, and at 30 °C, near the phase transition temperature of the lipids. Near the phase-transition temperature, a 1.5 mol% of peptide causes up to a twofold decrease in the lipid diffusion coefficients. In the gel-phase, this effect is reversed, with amyloid-ß(22-40) increasing the lipid diffusion coefficients. The observed changes in lipid diffusion are relevant to protein-protein interactions, which are strongly influenced by the diffusion of membrane components. The effect of the amyloid-ß peptide fragment on the diffusion of membrane lipids will provide insight into the membrane's role in AD.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Bicamadas Lipídicas/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/química , Difusão , Dimiristoilfosfatidilcolina/química , Humanos , Bicamadas Lipídicas/química , Domínios e Motivos de Interação entre Proteínas , Unitiol/química
5.
Biochem J ; 452(2): 231-9, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23514110

RESUMO

ROS (reactive oxygen species) generated by NADPH oxidases play an important role in cellular signal transduction regulating cell proliferation, survival and differentiation. Nox4 (NADPH oxidase 4) induces cellular senescence in human endothelial cells; however, intracellular targets for Nox4 remained elusive. In the present study, we show that Nox4 induces mitochondrial dysfunction in human endothelial cells. Nox4 depletion induced alterations in mitochondrial morphology, stabilized mitochondrial membrane potential and decreased production of H(2)O(2) in mitochondria. High-resolution respirometry in permeabilized cells combined with native PAGE demonstrated that Nox4 specifically inhibits the activity of mitochondrial electron transport chain complex I, and this was associated with a decreased concentration of complex I subunits. These data suggest a new pathway by which sustained Nox4 activity decreases mitochondrial function.


Assuntos
Complexo I de Transporte de Elétrons/antagonistas & inibidores , NADPH Oxidases/química , NADPH Oxidases/fisiologia , Complexo I de Transporte de Elétrons/química , Células Endoteliais/metabolismo , Técnicas de Silenciamento de Genes , Células Endoteliais da Veia Umbilical Humana , Humanos , Potencial da Membrana Mitocondrial , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , NADPH Oxidase 4 , NADPH Oxidases/deficiência , Fosforilação Oxidativa , Consumo de Oxigênio , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/química , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/química , Transdução de Sinais/fisiologia
6.
Biochim Biophys Acta ; 1817(2): 381-7, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22133636

RESUMO

The release of reactive oxygen species (ROS) as side products of aerobic metabolism in the mitochondria is an unavoidable consequence. As the capacity of organisms to deal with this exposure declines with age, accumulation of molecular damage caused by ROS has been defined as one of the central events during the ageing process in biological systems as well as in numerous diseases such as Alzheimer's and Parkinson's Dementia. In the filamentous fungus Podospora anserina, an ageing model with a clear defined mitochondrial etiology of ageing, in addition to the mitochondrial aconitase the ATP synthase alpha subunit was defined recently as a hot spot for oxidative modifications induced by ROS. In this report we show, that this reactivity is not randomly distributed over the ATP Synthase, but is channeled to a single tryptophan residue 503. This residue serves as an intra-molecular quencher for oxidative species and might also be involved in the metabolic perception of oxidative stress or regulation of enzyme activity. A putative metal binding site in the proximity of this tryptophan residue appears to be crucial for the molecular mechanism for the selective targeting of oxidative damage.


Assuntos
ATPases Mitocondriais Próton-Translocadoras/química , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Espécies Reativas de Oxigênio/farmacologia , Triptofano/metabolismo , Sítios de Ligação/efeitos dos fármacos , Ligação Competitiva/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Modelos Biológicos , Modelos Moleculares , Oxirredução , Estresse Oxidativo/fisiologia , Podospora/efeitos dos fármacos , Podospora/enzimologia , Podospora/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas/efeitos dos fármacos , Domínios e Motivos de Interação entre Proteínas/fisiologia , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Espécies Reativas de Oxigênio/metabolismo , Especificidade por Substrato , Triptofano/antagonistas & inibidores
7.
Methods Mol Biol ; 2596: 53-69, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36378430

RESUMO

Protein-protein interactions and multiprotein assemblies of water-soluble and membrane proteins are inherent features of the proteome, which also impart functional heterogeneity. One needs to consider this aspect while studying changes in abundance and activities of proteins in response to any physiological stimulus. Abundance changes in the components of a given proteome can be best visualized and efficiently quantified using electrophoresis-based approaches. Here, we describe the method of Blue Native Difference Gel Electrophoresis to quantify changes in abundance and activity of proteins in the context of protein-protein interactions. This method confers an additional advantage to monitor quantitative changes in membrane proteins, which otherwise is a difficult task.


Assuntos
Proteínas de Membrana , Proteoma , Proteoma/metabolismo , Eletroforese em Gel Bidimensional/métodos
8.
Biochim Biophys Acta ; 1807(9): 1185-97, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21679683

RESUMO

ATP synthases are part of the sophisticated cellular metabolic network and therefore multiple interactions have to be considered. As discussed in this review, ATP synthases form various supramolecular structures. These include dimers and homooligomeric species. But also interactions with other proteins, particularly those involved in energy conversion exist. The supramolecular assembly of the ATP synthase affects metabolism, organellar structure, diseases, ageing and vice versa. The most common approaches to isolate supercomplexes from native membranes by use of native electrophoresis or density gradients are introduced. On the one hand, isolated ATP synthase dimers and oligomers are employed for structural studies and elucidation of specific protein-protein interactions. On the other hand, native electrophoresis and other techniques serve as tool to trace changes of the supramolecular organisation depending on metabolic alterations. Upon analysing the structure, dimer-specific subunits can be identified as well as interactions with other proteins, for example, the adenine nucleotide translocator. In the organellar context, ATP synthase dimers and oligomers are involved in the formation of mitochondrial cristae. As a consequence, changes in the amount of such supercomplexes affect mitochondrial structure and function. Alterations in the cellular power plant have a strong impact on energy metabolism and ultimately play a significant role in pathophysiology. In plant systems, dimers of the ATP synthase have been also identified in chloroplasts. Similar to mammals, a correlation between metabolic changes and the amount of the chloroplast ATP synthase dimers exists. Therefore, this review focusses on the interplay between metabolism and supramolecular organisation of ATP synthase in different organisms.


Assuntos
Complexos de ATP Sintetase/metabolismo , Plantas/enzimologia , Complexos de ATP Sintetase/química , Animais , Organelas/enzimologia , Conformação Proteica
9.
Biochim Biophys Acta ; 1808(11): 2646-55, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21810407

RESUMO

The interaction of beta-amyloid peptides with lipid membranes is widely studied as trigger agents in Alzheimer's disease. Their mechanism of action at the molecular level is unknown and their interaction with the neural membrane is crucial to elucidate the onset of the disease. In this study we have investigated the interaction of water soluble forms of beta-amyloid Aß(1-42) with lipid bilayers supported by polymer cushion. A reproducible protocol for the preparation of a supported phospholipid membrane with composition mimicking the neural membrane and in physiological condition (PBS buffer, pH=7.4) was refined by neutron reflectivity. The change in structure and local mechanical properties of the membrane in the presence of Aß(1-42) was investigated by neutron reflectivity and Atomic Force Microscopy (AFM) Force Spectroscopy. Neutron reflectivity evidenced that Aß(1-42) interacts strongly with the supported membrane, causing a change in the scattering length density profile of the lipid bilayer, and penetrates into the membrane. Concomitantly, the local mechanical properties of the bilayer are deeply modified by the interaction with the peptide as seen by AFM Force Spectroscopy. These results may be of great importance for the onset of the Alzheimer's disease, since a simultaneous change in the structural and mechanical properties of the lipid matrix could influence all membrane based signal cascades.


Assuntos
Peptídeos beta-Amiloides/química , Bicamadas Lipídicas/química , Microscopia de Força Atômica , Fragmentos de Peptídeos/química , Polímeros/química , Modelos Químicos
10.
Biochim Biophys Acta ; 1798(10): 1969-76, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20603101

RESUMO

We have investigated the influence of the neurotoxic Alzheimer's disease peptide amyloid-beta (25-35) on the dynamics of phospholipid membranes by means of quasi-elastic neutron scattering in the picosecond time-scale. Samples of pure phospholipids (DMPC/DMPS) and samples with amyloid-beta (25-35) peptide included have been compared. With two different orientations of the samples the directional dependence of the dynamics was probed. The sample temperature was varied between 290K and 320K to cover both the gel phase and the liquid-crystalline phase of the lipid membranes. The model for describing the dynamics combines a long-range translational diffusion of the lipid molecules and a spatially restricted diffusive motion. Amyloid-beta (25-35) peptide affects significantly the ps-dynamics of oriented lipid membranes in different ways. It accelerates the lateral diffusion especially in the liquid-crystalline phase. This is very important for all kinds of protein-protein interactions which are enabled and strongly influenced by the lateral diffusion such as signal and energy transducing cascades. Amyloid-beta (25-35) peptide also increases the local lipid mobility as probed by variations of the vibrational motions with a larger effect in the out-of-plane direction. Thus, the insertion of amyloid-beta (25-35) peptide changes not only the structure of phospholipid membranes as previously demonstrated by us employing neutron diffraction (disordering effect on the mosaicity of the lipid bilayer system) but also the dynamics inside the membranes. The amyloid-beta (25-35) peptide induced membrane alteration even at only 3mol% might be involved in the pathology of Alzheimer's disease as well as be a clue in early diagnosis and therapy.


Assuntos
Peptídeos beta-Amiloides/química , Bicamadas Lipídicas/química , Fragmentos de Peptídeos/química , Fosfolipídeos/química , Algoritmos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Dimiristoilfosfatidilcolina/química , Dimiristoilfosfatidilcolina/metabolismo , Humanos , Cinética , Bicamadas Lipídicas/metabolismo , Modelos Químicos , Modelos Moleculares , Difração de Nêutrons/métodos , Fragmentos de Peptídeos/metabolismo , Fosfolipídeos/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Temperatura , Fatores de Tempo , Unitiol/química , Unitiol/metabolismo
11.
Cells ; 10(12)2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34944035

RESUMO

Mitochondria play a critical role in providing energy, maintaining cellular metabolism, and regulating cell survival and death. To carry out these crucial functions, mitochondria employ more than 1500 proteins, distributed between two membranes and two aqueous compartments. An extensive network of dedicated proteins is engaged in importing and sorting these nuclear-encoded proteins into their designated mitochondrial compartments. Defects in this fundamental system are related to a variety of pathologies, particularly engaging the most energy-demanding tissues. In this review, we summarize the state-of-the-art knowledge about the mitochondrial protein import machinery and describe the known interrelation of its failure with age-related neurodegenerative and cardiovascular diseases.


Assuntos
Envelhecimento/metabolismo , Doenças Cardiovasculares/metabolismo , Proteínas Mitocondriais/metabolismo , Doenças Neurodegenerativas/metabolismo , Animais , Humanos , Membranas Mitocondriais/metabolismo , Transporte Proteico
12.
J Med Chem ; 64(22): 16464-16479, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34739758

RESUMO

Alzheimer's disease (AD) is a severe neurodegenerative pathology with no effective treatment known. Toxic amyloid-ß peptide (Aß) oligomers play a crucial role in AD pathogenesis. All-d-Enantiomeric peptide D3 and its derivatives were developed to disassemble and destroy cytotoxic Aß aggregates. One of the D3-like compounds is approaching phase II clinical trials; however, high-resolution details of its disease-preventing or pharmacological actions are not completely clear. We demonstrate that peptide D3 stabilizing Aß monomer dynamically interacts with the extracellular juxtamembrane region of a membrane-bound fragment of an amyloid precursor protein containing the Aß sequence. MD simulations based on NMR measurement results suggest that D3 targets the amyloidogenic region, not compromising its α-helicity and preventing intermolecular hydrogen bonding, thus creating prerequisites for inhibition of early steps of Aß conversion into ß-conformation and its toxic oligomerization. An enhanced understanding of the D3 action molecular mechanism facilitates development of effective AD treatment and prevention strategies.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Precursor de Proteína beta-Amiloide/metabolismo , Oligopeptídeos/química , Oligopeptídeos/uso terapêutico , Sequência de Aminoácidos , Animais , Humanos , Camundongos , Simulação de Dinâmica Molecular , Oligopeptídeos/metabolismo , Ligação Proteica , Estereoisomerismo
13.
Biogerontology ; 11(3): 321-34, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19894137

RESUMO

Mitochondria being the major source and target of reactive oxygen species (ROS) play a crucial role during ageing. We analyzed ageing and calorie restriction (CR)-induced changes in abundance of rat liver mitochondrial proteins to understand key aspects behind the age-retarding mechanism of CR. The combination of blue-native (BN) gel system with fluorescence Difference Gel Electrophoresis (DIGE) facilitated an efficient analysis of soluble and membrane proteins, existing as monomers or multi-protein assemblies. Changes in abundance of specific key subunits of respiratory chain complexes I, IV and V, critical for activity and/or assembly of the complexes were identified. CR lowered complex I assembly and complex IV activity, which is discussed as a molecular mechanism to minimize ROS production at mitochondria. Notably, the antioxidant system was found to be least affected. The GSH:GSSG couple could be depicted as a rapid mean to handle the fluctuations in ROS levels led by reversible metabolic shifts. We evaluated the relative significance of ROS generation against quenching. We also observed parallel and unidirectional changes as effect of ageing and CR, in subunits of ATP synthase, cytochrome P450 and glutathione S-transferase. This is the first report on such 'putatively hormetic' ageing-analogous effects of CR, besides the age-retarding ones.


Assuntos
Envelhecimento/metabolismo , Restrição Calórica , Mitocôndrias Hepáticas/metabolismo , Animais , Antioxidantes/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Eletroforese em Gel de Poliacrilamida , Glutationa/metabolismo , Masculino , Mitocôndrias Hepáticas/enzimologia , Fosforilação Oxidativa , Estresse Oxidativo , Ratos , Ratos Wistar , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
14.
Biochim Biophys Acta ; 1778(4): 1131-40, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18206981

RESUMO

For functional characterization, we isolated the F1FO-ATP synthase of the thermophilic cyanobacterium Thermosynechococcus elongatus. Because of the high content of phycobilisomes, a combination of dye-ligand chromatography and anion exchange chromatography was necessary to yield highly pure ATP synthase. All nine single F1FO subunits were identified by mass spectrometry. Western blotting revealed the SDS stable oligomer of subunits c in T. elongatus. In contrast to the mass archived in the database (10,141 Da), MALDI-TOF-MS revealed a mass of the subunit c monomer of only 8238 Da. A notable feature of the ATP synthase was its ability to synthesize ATP in a wide temperature range and its stability against chaotropic reagents. After reconstitution of F1FO into liposomes, ATP synthesis energized by an applied electrochemical proton gradient demonstrated functional integrity. The highest ATP synthesis rate was determined at the natural growth temperature of 55 degrees C, but even at 95 degrees C ATP production occurred. In contrast to other prokaryotic and eukaryotic ATP synthases which can be disassembled with Coomassie dye into the membrane integral and the hydrophilic part, the F1FO-ATP synthase possessed a particular stability. Also with the chaotropic reagents sodium bromide and guanidine thiocyanate, significantly harsher conditions were required for disassembly of the thermophilic ATP synthase.


Assuntos
ATPases Bacterianas Próton-Translocadoras/metabolismo , Cianobactérias/enzimologia , Trifosfato de Adenosina/biossíntese , Sequência de Aminoácidos , ATPases Bacterianas Próton-Translocadoras/química , ATPases Bacterianas Próton-Translocadoras/isolamento & purificação , Eletroforese em Gel de Poliacrilamida , Estabilidade Enzimática , Dados de Sequência Molecular , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Corantes de Rosanilina
15.
Electrophoresis ; 30(20): 3622-5, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19784950

RESUMO

Native electrophoresis is a powerful tool for the separation of intact protein complexes. By incubating such gels in a suitable reaction solution, specific enzyme activities can be screened comprehensively. The recent standard procedure for determination of ATP hydrolysis activity in blue or clear native gels is based on formation of a lead phosphate precipitate. The resulting white bands are challenging for detection and documentation of low activities. For the analysis of photosynthetic ATP synthases, the method has to be adapted to deregulate the inhibition of latent ATPase functions. Therefore, we introduced an incubation of gels in detergent solution, whereby taurodeoxycholate turned out to be the most efficient activator. In order to detect low ATPase activities, a short additional incubation step subsequent to the formation of lead phosphate is recommended. By adding ammonium sulfide, the white bands are converted into brownish-black bands of lead sulfide. Our new procedure sustains the linear quantitation range of the original lead phosphate protocol and moreover expands the detection limit.


Assuntos
Adenosina Trifosfatases/análise , Eletroforese em Gel de Poliacrilamida/métodos , Chumbo/análise
16.
Photochem Photobiol ; 85(2): 590-7, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19192208

RESUMO

Knowledge about the dynamical properties of a protein is of essential importance for understanding the structure-dynamics-function relationship at the atomic level. So far, however, the correlation between internal protein dynamics and functionality has only been studied indirectly in steady-state experiments by variation of external parameters like temperature and hydration. In the present study we describe a novel type of (laser-neutron) pump-probe experiment, which combines in situ optical activation of the biological function of a membrane protein with a time-dependent monitoring of the protein dynamics using quasielastic neutron scattering. As a first successful application we present data obtained selectively in the ground state and in the M-intermediate of bacteriorhodopsin (BR). Temporary alterations in both localized reorientational protein motions and harmonic vibrational dynamics have been observed during the photocycle of BR. This observation is a direct proof for the functional significance of protein structural flexibility, which is correlated with the large-scale structural changes in the protein structure occurring during the M-intermediate. We anticipate that functionally important modulations of protein dynamics as observed here are of relevance for most other proteins exhibiting conformational transitions in the time course of functional operation.


Assuntos
Bacteriorodopsinas/química , Luz , Processos Fotoquímicos , Euryarchaeota/química , Euryarchaeota/efeitos da radiação , Lasers , Modelos Moleculares , Nêutrons , Estrutura Terciária de Proteína , Análise Espectral
17.
Mitochondrion ; 47: 227-237, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30578987

RESUMO

Partial degeneration of dopaminergic neurons in the substantia nigra (SN), induces locomotor disability in animals but with time it is spontaneously compensated for by neurons surviving in the tissue by increasing their functional efficiency. Such compensation probably increases energy requirements and astrocyte support could be essential for this ability. We studied the effect of degeneration of dopaminergic neurons induced by the selective toxin 6-hydroxydopamine and/or death of 30% of astrocytes induced by chronic infusion of the glial toxin fluorocitrate on functioning of the mitochondrial electron transfer chain (ETC) complexes (Cxs) I, II, IV and their higher assembled forms, supercomplexes in the rat SN. Astrocyte death decreased Cx I and IV performance, while significantly increased the amount of Cx II protein SDHA, indicating system adaptation. After death of 50% of dopaminergic neurons in the SN, we observed increased mitochondrial Cxs performing, especially Cx I and IV in the remaining cells. It corresponded with reduction of behavioural deficits. Those results support the hypothesis that the compensatory ability of surviving neurons requires meeting their higher energetic demand by ETC. When astrocytes were defective, the neurons remaining after partial lesion were not able to enhance their functioning anymore and compensate for deficits. It proves in vivo that astrocytic support is important for compensatory potential of neurons in the SN. Neuro-glia cooperation is fundamental for compensation for early deficits in the nigrostriatal system.


Assuntos
Astrócitos/enzimologia , Neurônios Dopaminérgicos/enzimologia , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Epigênese Genética , Mitocôndrias/metabolismo , Doença de Parkinson Secundária/enzimologia , Animais , Astrócitos/patologia , Masculino , Mitocôndrias/patologia , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/patologia , Ratos , Ratos Wistar
18.
Biochim Biophys Acta ; 1774(5): 566-74, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17442644

RESUMO

ATP synthases - rotary nano machines - consist of two major parts, F(O) and F(1), connected by two stalks: the central and the peripheral stalk. In spinach chloroplasts, the central stalk (subunits gamma, epsilon) forms with the cylinder of subunits III the rotor and transmits proton motive force from F(O) to F(1), inducing conformational changes of the catalytic centers in F(1). The epsilon subunit is an important regulator affecting adjacent subunits as well as the activity of the whole protein complex. Using a combination of chemical cross-linking and mass spectrometry, we monitored interactions of subunit epsilon in spinach chloroplast ATP synthase with III and gamma. Onto identification of interacting residues in subunits epsilon and III, one cross-link defined the distance between epsilon-Cys6 and III-Lys48 to be 9.4 A at minimum. epsilon-Cys6 was competitively cross-linked with subunit gamma. Altered cross-linking yields revealed the impact of nucleotides and Mg(2+) on cross-linking of subunit epsilon. The presence of nucleotides apparently induced a displacement of the N-terminus of subunit epsilon, which separated epsilon-Cys6 from both, III-Lys48 and subunit gamma, and thus decreasing the yield of the cross-linked subunits epsilon and gamma as well as epsilon and III. However, increasing concentrations of the cofactor Mg(2+) favoured cross-linking of epsilon-Cys6 with subunit gamma instead of III-Lys48 indicating an approximation of subunits gamma and epsilon and a separation from III-Lys48.


Assuntos
Complexos de ATP Sintetase/metabolismo , Cloroplastos/enzimologia , Magnésio/metabolismo , Nucleotídeos/metabolismo , Complexos de ATP Sintetase/química , Sequência de Aminoácidos , Eletroforese em Gel de Poliacrilamida , Ésteres , Dados de Sequência Molecular , Espectrometria de Massas por Ionização por Electrospray , Spinacia oleracea/enzimologia , Espectrometria de Massas em Tandem
19.
Biochim Biophys Acta ; 1768(9): 2157-63, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17669358

RESUMO

Glycocardiolipin is an archaeal analogue of mitochondrial cardiolipin, having an extraordinary affinity for bacteriorhodopsin, the photoactivated proton pump in the purple membrane of Halobacterium salinarum. Here purple membranes have been isolated by osmotic shock from either cells or envelopes of Hbt. salinarum. We show that purple membranes isolated from envelopes have a lower content of glycocardiolipin than standard purple membranes isolated from cells. The properties of bacteriorhodopsin in the two different purple membrane preparations are compared; although some differences in the absorption spectrum and the kinetic of the dark adaptation process are present, the reduction of native membrane glycocardiolipin content does not significantly affect the photocycle (M-intermediate rise and decay) as well as proton pumping of bacteriorhodopsin. However, interaction of the pumped proton with the membrane surface and its equilibration with the aqueous bulk phase are altered.


Assuntos
Bacteriorodopsinas/fisiologia , Cardiolipinas/administração & dosagem , Halobacterium salinarum/fisiologia , Bombas de Próton/fisiologia , Membrana Purpúrea/efeitos dos fármacos , Membrana Purpúrea/fisiologia , Bacteriorodopsinas/efeitos dos fármacos , Bacteriorodopsinas/efeitos da radiação , Relação Dose-Resposta a Droga , Halobacterium salinarum/efeitos dos fármacos , Halobacterium salinarum/efeitos da radiação , Luz , Bombas de Próton/efeitos dos fármacos , Bombas de Próton/efeitos da radiação , Prótons , Propriedades de Superfície
20.
J Mol Biol ; 371(4): 914-23, 2007 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-17599349

RESUMO

We investigated the influence of hydration water on the relationship between structure, dynamics and function in a biological membrane system. For the example of the purple membrane (PM) with its protein bacteriorhodopsin (BR), a light-driven proton pump, complementary information from neutron diffraction, quasi-elastic neutron scattering (QENS) and dielectric spectroscopy will form a comprehensive picture of the structural and dynamic behavior of the PM in the temperature range between 150 and 290 K. Temperature- and humidity-dependent changes in the membrane system influence the accessibility of the different photocycle intermediates of BR. The melting of the 'freezing bound water' between 220 and 250 K could be related to the transition from the M1 to the M2 intermediate, which represents the key step in the photocycle. The dynamic transition in the vicinity of 180 K was shown to be necessary to ensure that the M1 intermediate can be populated and that the melting of crystallized bulk water above 255 K enables the completion of the photocycle.


Assuntos
Elétrons , Difração de Nêutrons , Membrana Purpúrea/química , Membrana Purpúrea/metabolismo , Água/química , Água/metabolismo , Bacteriorodopsinas/química , Bacteriorodopsinas/metabolismo , Halobacterium salinarum/química , Halobacterium salinarum/metabolismo , Espectrofotometria , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA