Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(9): 6145-6156, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38380615

RESUMO

Neutral 1-boraphenalene displays the isoelectronic structure of the phenalenyl carbocation and is expected to behave as an attractive organoboron multi-redox system. However, the isolation of new redox states have remained elusive even though the preparation of neutral boron(III)-containing phenalene compounds have been extensively studied. Herein, we have adopted an N-heterocyclic carbene ligand stabilization approach to achieve the first isolation of the stable and ambipolar 1-boraphenalenyl radical 1•. The 1-boraphenalenyl cation 1+ and anion 1- have also been electrochemically observed and chemically isolated, representing new redox forms of boraphenalene for the study of non-Kekulé polynuclear benzenoid molecules. Experimental and theoretical investigations suggest that the interconvertible three-redox-state species undergo reversible electronic structure modifications, which primarily take place on the polycyclic framework of the molecules, exhibiting atypical behavior compared to known donor-stabilized organoboron compounds. Initial reactivity studies, aromaticity evaluations, and photophysical studies show redox-state-dependent trends. While 1+ is luminescent in both the solution and solid states, 1• exhibits boron-centered reactivity and 1- undergoes substitution chemistry on the boraphenalenyl skeleton and serves as a single-electron transfer reductant.

2.
J Nanobiotechnology ; 22(1): 54, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326903

RESUMO

The treatment of critical-size bone defects with irregular shapes remains a major challenge in the field of orthopedics. Bone implants with adaptability to complex morphological bone defects, bone-adhesive properties, and potent osteogenic capacity are necessary. Here, a shape-adaptive, highly bone-adhesive, and ultrasound-powered injectable nanocomposite hydrogel is developed via dynamic covalent crosslinking of amine-modified piezoelectric nanoparticles and biopolymer hydrogel networks for electrically accelerated bone healing. Depending on the inorganic-organic interaction between the amino-modified piezoelectric nanoparticles and the bio-adhesive hydrogel network, the bone adhesive strength of the prepared hydrogel exhibited an approximately 3-fold increase. In response to ultrasound radiation, the nanocomposite hydrogel could generate a controllable electrical output (-41.16 to 61.82 mV) to enhance the osteogenic effect in vitro and in vivo significantly. Rat critical-size calvarial defect repair validates accelerated bone healing. In addition, bioinformatics analysis reveals that the ultrasound-responsive nanocomposite hydrogel enhanced the osteogenic differentiation of bone mesenchymal stem cells by increasing calcium ion influx and up-regulating the PI3K/AKT and MEK/ERK signaling pathways. Overall, the present work reveals a novel wireless ultrasound-powered bone-adhesive nanocomposite hydrogel that broadens the therapeutic horizons for irregular bone defects.


Assuntos
Osteogênese , Fosfatidilinositol 3-Quinases , Ratos , Animais , Nanogéis , Osso e Ossos/diagnóstico por imagem , Hidrogéis/farmacologia
3.
J Am Chem Soc ; 145(39): 21475-21482, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37738168

RESUMO

Selective and site-specific boron-doping of polycyclic aromatic hydrocarbon frameworks often give rise to redox and/or photophysical properties that are not easily accessible with the analogous all-carbon systems. Herein, we report ligand-mediated control of boraphenanthrene closed- and open-shell electronic states, which has led to the first structurally characterized examples of neutral bis(9-boraphenanthrene) (2-3) and its corresponding biradical (4). Notably, compounds 2 and 3 show intramolecular charge transfer absorption from the 9-boraphenanthrene units to p-quinodimethane, exhibiting dual (red-shifted) emission in solution due to excited state conjugation enhancement (ESCE). Moreover, while boron-centered monoradicals are ubiquitous, biradical 4 represents a rare type of open-shell singlet compound with 95% biradical character, among the highest of any reported boron-based polycyclic species with two radical sites.

4.
Anal Chem ; 95(2): 1318-1326, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36577742

RESUMO

Raman spectra are often masked by strong fluorescence, which severely hinders the applications of Raman spectroscopy. Herein, for the first time, we report ionic-wind-enhanced Raman spectroscopy (IWERS) incorporated with photobleaching (PB) as a noninvasive approach to detect fluorescent and vulnerable samples without a substrate. In this study, ionic wind (IW) generated by needle-net electrodes transfers charges to the sample surface in air on the scale of millimeters rather than nanometers in surface-enhanced Raman spectroscopy. Density functional theory calculations reveal that the ionic particles in IW increase the susceptibility of the sample molecules, thus enhancing the Raman signals. Meanwhile, the incorporation of IW with PB yields a synergistic effect to quench fluorescence. Therefore, this approach can improve the signal-to-noise ratio of Raman peaks up to three times higher than that with only PB. At the same time, IWERS can avoid sample pollution and destruction without substrates as well as high laser power. For archeological samples and a red rock as an analogue to Mars geological samples, IWERS successfully identified weak but key Raman peaks, which were masked by strong florescence. It suggests that IWERS is a promising tool for characterizations in the fields of archeology, planetary science, biomedicine, and soft matter.


Assuntos
Lasers , Análise Espectral Raman , Análise Espectral Raman/métodos , Razão Sinal-Ruído , Fotodegradação
5.
Org Biomol Chem ; 20(37): 7429-7438, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36097881

RESUMO

We report the molecular recognition properties of Pillar[n]MaxQ (P[n]MQ) toward a series of (methylated) amino acids, amino acid amides, and post-translationally modified peptides by a combination of 1H NMR, isothermal titration calorimetry, indicator displacement assays, and molecular dynamics simulations. We find that P6MQ is a potent receptor for N-methylated amino acid side chains. P6MQ recognized the H3K4Me3 peptide with Kd = 16 nM in phosphate buffered saline.


Assuntos
Aminoácidos , Peptídeos , Amidas , Aminoácidos/química , Calorimetria , Peptídeos/química , Fosfatos
6.
Chemistry ; 27(69): 17476-17486, 2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34613641

RESUMO

We report the synthesis of two new acyclic sulfated acyclic CB[n]-type receptors (TriM0 and Me4 TetM0) and investigations of their binding properties toward a panel of drugs of abuse (1-13) by a combination of 1 H NMR spectroscopy and isothermal titration calorimetry. TetM0 is the most potent receptor with Ka ≥106  M-1 toward methamphetamine, fentanyl, MDMA and mephedrone. TetM0 is not cytotoxic toward HepG2 and HEK 293 cells below 100 µM according to MTS metabolic and adenylate kinase release assays and is well tolerated in vivo when dosed at 46 mg kg-1 . TetM0 does not inhibit the hERG ion channel and is not mutagenic based on the Ames fluctuation test. Finally, in vivo efficacy studies show that the hyperlocomotion of mice treated with methamphetamine can be greatly reduced by treatment with TetM0 up to 5 minutes later. TetM0 has potential as a broad spectrum in vivo sequestrant for drugs of abuse.


Assuntos
Metanfetamina , Sulfatos , Animais , Células HEK293 , Humanos , Metanfetamina/toxicidade , Camundongos
7.
Chem Soc Rev ; 49(21): 7516-7532, 2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33043945

RESUMO

Pharmaceutical agents, drugs of abuse, and toxic substances have a large impact, positive and negative, on modern society. Efforts to mitigate the side effects of pharmaceuticals and counteract the life threatening effects of drugs of abuse and toxins can occur either by pharmacodynamic (PD) approaches based on bioreceptor·drug antagonism or by pharmacokinetic (PK) approaches that seek to reduce the concentration of free drug. In this tutorial review, we present the use of supramolecular hosts (cyclodextrins, calixarenes, (acyclic) cucurbiturils, and pillararenes) as in vivo sequestration agents for neuromuscular blockers, drugs of abuse (methamphetamine and fentanyl), anesthetics, neurotoxins, the pesticide paraquat, and heparin anti-coagulants by the PK approach. The review presents the basic physical and molecular recognition features of the supramolecular hosts and some of the principles used in their selection and structural optimization for in vivo sequestration applications. The influence of host·guest complexation on other relevant in vivo properties of drugs (e.g. distribution, circulation time, excretion, redox properties) is also mentioned. The article concludes with a discussion of future directions.


Assuntos
Calixarenos/química , Ciclodextrinas/química , Compostos Macrocíclicos/química , Sequestrantes/química , Substâncias Macromoleculares/química , Conformação Molecular
8.
J Org Chem ; 85(1): 85-91, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31564094

RESUMO

We report the synthesis and characterization of P-phenyl modified phosphorus- and nitrogen-containing phosphaquinolinone heterocycles. The change from -OPh to -Ph results in a marked increase in the quantum yield of the scaffold as well as a moderate red-shifting of the emission. While calculations suggest that π to π* transitions are dominant, intramolecular charge transfer (ICT) also contributes in the excited state. Solution- and solid-state studies of the dimerization of this new congener to the P-phenoxy variant are also reported, showing retention of the dimerization behavior in this scaffold.

9.
J Org Chem ; 84(12): 8131-8139, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31117581

RESUMO

A family of naphtho[2,1- e]-fused 1,2-azaphosphorine 2-oxides that contain electron-withdrawing and -donating substituents on the 3-phenyl groups has been prepared and characterized. This new series of phosphorus- and nitrogen-containing heterocycles is brightly fluorescent with tunable emission wavelengths (λem = 441-493 nm, ΦF = 0.19-0.93). Their strong self-dimerization behavior through N-H and P═O hydrogen bond donors/acceptors was investigated experimentally and theoretically. The pendant phenyl group can be used to modify the intrinsic optoelectronic properties as well as the self-association of the PN-heterocycles. The results presented herein are expected to enable the development of new photofunctional materials and provide important insights in diverse areas of supramolecular chemistry.

10.
Angew Chem Int Ed Engl ; 58(12): 3934-3938, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30702802

RESUMO

We describe two novel hybrid receptors combining a phosphorus-/nitrogen-containing (PN) phosphonamidate heterocycle with urea recognition units in an arylethynyl backbone. Structural, spectroscopic and computational studies reveal that the origin of superior binding for hydrogen sulfate (HSO4- ) anion is correlated with the formation of strong hetero-complementary hydrogen bonds with the phosphonamidate motif. We further demonstrate that the hybrid host system is capable of capturing/transporting the HSO4- anion from an aqueous, biphasic system.

11.
Sci Rep ; 14(1): 741, 2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38185674

RESUMO

The shear yield stress is an important parameter for the industrial application of magnetorheological (MR) fluids. A test equipment was designed and built to perform investigations on the behaviours of compression and shear after squeeze of MR fluids. Mathematical expression of magnetic flux density was further established. Furthermore, the magnetic field distribution of the test device based on two-coil mode and single-coil mode was simulated and compared using finite element analysis(ANSYS/Multiphysics). An experimental test system was fabricated and modified based on the final conditions and simulation results. The compression and shear after squeeze performances of MR fluids were tested. The results showed that a smaller initial gap distance or a larger compressive strain corresponds to a larger compressive stress under the same external magnetic field strength. The shear yield stress after the squeeze of MR fluids increases quickly with the increasing compression stress and the increasing magnetic flux density. This test equipment was thought to be suitable for studying the compression and shear after squeeze performances of MR fluids.

12.
Chem Commun (Camb) ; 60(14): 1880-1883, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38284335

RESUMO

The non-bonding carbone lone pair in geometrically-constrained antimony and bismuth carbodiphosphorane complexes readily complexed AuCl to afford rare examples of geminal bimetallic carbone coordination featuring a main-group metal.

13.
Nat Chem ; 16(3): 437-445, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38052948

RESUMO

Substitution of a C=C bond by an isoelectronic B-N bond is a well-established strategy to alter the electronic structure and stability of acenes. BN-substituted acenes that possess narrow energy gaps have attractive optoelectronic properties. However, they are susceptible to air and/or light. Here we present the design, synthesis and molecular structures of fully π-conjugated cationic BN-doped acenes stabilized by carbodicarbene ligands. They are luminescent in the solution and solid states and show high air and moisture stability. Compared with their neutral BN-substituted counterparts as well as the parent all-carbon acenes, these species display improved quantum yields and small optical gaps. The electronic structures of the azabora-anthracene and azabora-tetracene cations resemble higher-order acenes while possessing high photo-oxidative resistance. Investigations using density functional theory suggest that the stability and photo-physics of these conjugated systems may be ascribed to their cationic nature and the electronic properties of the carbodicarbene.

14.
Bioact Mater ; 34: 381-400, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38269309

RESUMO

Preventing local tumor recurrence while promoting bone tissue regeneration is an urgent need for osteosarcoma treatment. However, the therapeutic efficacy of traditional photosensitizers is limited, and they lack the ability to regenerate bone. Here, a piezo-photo nanoheterostructure is developed based on ultrasmall bismuth/strontium titanate nanocubes (denoted as Bi/SrTiO3), which achieve piezoelectric field-driven fast charge separation coupling with surface plasmon resonance to efficiently generate reactive oxygen species. These hybrid nanotherapeutics are integrated into injectable biopolymer hydrogels, which exhibit outstanding anticancer effects under the combined irradiation of NIR and ultrasound. In vivo studies using patient-derived xenograft models and tibial osteosarcoma models demonstrate that the hydrogels achieve tumor suppression with efficacy rates of 98.6 % and 67.6 % in the respective models. Furthermore, the hydrogel had good filling and retention capabilities in the bone defect region, which exerted bone repair therapeutic efficacy by polarizing and conveying electrical stimuli to the cells under mild ultrasound radiation. This study provides a comprehensive and clinically feasible strategy for the overall treatment and tissue regeneration of osteosarcoma.

15.
J Exp Zool A Ecol Integr Physiol ; 339(10): 925-938, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37528753

RESUMO

Flow stimulation before release into the wild may contribute to improved survivability of farmed fish. However, the effects of flow stimulation on the survival rate of fish depend on the fish species and exercise regime, such as exercise type, duration, and intensity. In this study, juvenile Percocypris pingi swam for 18 h per day for 8 weeks under different water speeds, 3 cm s-1 (control) and 1, 2, and 4 body lengths (bl) s-1 , at 20°C. Then, parameters related to the growth rate, swimming capacity, spontaneous activity, and immune function were measured. We found that (1) continuous flow stimulation had no significant influence on the growth but was conducive to the increase in the relative carcass mass; (2) continuous flow stimulation at 2 or 4 bl s-1 enhanced the aerobic swimming capacity (Ucrit ), which may be due to an increase in anaerobic exercise capacity (endurance time) rather than to changes in maximum metabolic rate and aerobic scope; (3) continuous flow stimulation at 4 bl s-1 led to a significant increase in spontaneous activity, which was mainly due to the higher percent time spent moving as compared with the controls; and (4) continuous flow stimulation at 2 bl s-1 may contribute to improving the nonspecific immune parameter (lysozyme activity) in juvenile P. pingi. Our findings suggest that continuous flow stimulation at 2 or 4 bl s-1 for 18 h per day for 56 days at 20°C before release in wild may be a suitable training regime for improving the survival rate of cultured juvenile P. pingi.


Assuntos
Cyprinidae , Natação , Animais , Natação/fisiologia
16.
Nanoscale Adv ; 5(12): 3304-3315, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37325540

RESUMO

Carbon dots (CDs), as new carbon nanomaterials, have potential applications in multiple fields due to their superior optical properties, good biocompatibility, and easy preparation. However, CDs are typically an aggregation-caused quenching (ACQ) material, which has a huge limitation on the practical application of CDs. To solve this problem, in this paper, CDs were prepared by the solvothermal method using citric acid and o-phenylenediamine as precursors and dimethylformamide as solvent. Then using CDs as nucleating agents, solid-state green fluorescent CDs were synthesized by in situ growth of nano-hydroxyapatite (HA) crystals on the surface of CDs. The results show that CDs are stably dispersed single-particlely in the form of bulk defects in the nano-HA lattice matrices with a dispersion concentration of 3.10%, and solid-state green fluorescence of CDs is achieved with a stable emission wavelength peak position near 503 nm, which provides a new solution to the ACQ problem. CDs-HA nanopowders were further used as LED phosphors to obtain bright green LEDs. In addition, CDs-HA nanopowders showed excellent performance in cell imaging (mBMSCs and 143B) applications, which provides a new scheme for further applications of CDs in the field of cell imaging and even in vivo imaging.

17.
Chem ; 9(4): 881-900, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37346394

RESUMO

Pillar[6]MaxQ (P6AS) functions as an in vivo sequestration agent for methamphetamine and fentanyl. We use 1H NMR, isothermal titration calorimetry, and molecular modelling to deduce the geometry and strength of the P6AS•drug complexes. P6AS forms tight complexes with fentanyl (Kd=9.8 nM), PCP (17.1 nM), MDMA (25.5 nM), mephedrone (52.4 nM), and methamphetamine (101 nM). P6AS has good in vitro biocompatibility according to MTS metabolic, Adenylate Kinase cell death, and hERG ion channel inhibition assays, and the Ames fluctuation test. The no observed adverse effect level for P6AS is 45 mg/kg. The hyperlocomotion of mice treated with methamphetamine (0.5 mg/kg) can be ameliorated by treatment with P6AS (35.7 mg/kg) 5-minutes later, whereas the hyperlocomotion of mice treated with fentanyl (0.1 mg/kg) can be controlled by treatment with P6AS (5 mg/kg) up to 15-minutes later. P6AS has significant potential for development as a broad spectrum in vivo sequestration agent.

18.
New J Chem ; 46(3): 995-1002, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35250257

RESUMO

We report an investigation of the complexation between a water soluble pillararene host (WP6) and a panel of hydrophobic cationic guests (G1 - G20) by a combination of 1H NMR spectroscopy and isothermal titration calorimetry in phosphate buffered saline. We find that WP6 forms 1:1 complexes with Ka values in the 104 - 109 M-1 range driven by favorable enthalpic contributions. This thermodynamic dataset serves as blinded data for the SAMPL9 challenge.

19.
Adv Sci (Weinh) ; 9(13): e2105586, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35253394

RESUMO

Electroconductive hydrogels are very attractive candidates for accelerated spinal cord injury (SCI) repair because they match the electrical and mechanical properties of neural tissue. However, electroconductive hydrogel implantation can potentially aggravate inflammation, and hinder its repair efficacy. Bone marrow stem cell-derived exosomes (BMSC-exosomes) have shown immunomodulatory and tissue regeneration effects, therefore, neural tissue-like electroconductive hydrogels loaded with BMSC-exosomes are developed for the synergistic treatment of SCI. These exosomes-loaded electroconductive hydrogels modulate microglial M2 polarization via the NF-κB pathway, and synergistically enhance neuronal and oligodendrocyte differentiation of neural stem cells (NSCs) while inhibiting astrocyte differentiation, and also increase axon outgrowth via the PTEN/PI3K/AKT/mTOR pathway. Furthermore, exosomes combined electroconductive hydrogels significantly decrease the number of CD68-positive microglia, enhance local NSCs recruitment, and promote neuronal and axonal regeneration, resulting in significant functional recovery at the early stage in an SCI mouse model. Hence, the findings of this study demonstrate that the combination of electroconductive hydrogels and BMSC-exosomes is a promising therapeutic strategy for SCI repair.


Assuntos
Exossomos , Traumatismos da Medula Espinal , Animais , Axônios/metabolismo , Exossomos/metabolismo , Hidrogéis , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/terapia
20.
ACS Nano ; 16(12): 20770-20785, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36412574

RESUMO

Preventing local tumor recurrence and simultaneously improving bone-tissue regeneration are in great demand for osteosarcoma therapy. However, the current therapeutic implants fail to selectively suppress tumor growth and enhance osteogenesis, and antitumor therapy may compromise osseointegration of the bone implant. Here, based on the different responses of bone tumor cells and osteoblasts to different electric stimulations, we constructed ferroelectric BaTiO3 nanorod arrays (NBTO) on the surface of titanium implants with switchable dynamic and static electrical stimulation for selective bone-tumor therapy and bone tissue regeneration. Polarized NBTO (PNBTO) generated a sustained dynamic electrical stimulus in response to wireless ultrasonic irradiation ("switch-on"), which disrupted the orientation of the spindle filaments of the tumor cell, blocked the G2/M phase of mitosis, and ultimately led to tumor cell death, whereas it had almost no cytotoxic effect on normal bone cells. Under the switch-off state, PNBTO with a high surface potential provided static electrical stimulation, accelerating osteogenic differentiation of mesenchymal stem cells and enhancing the quality of bone regeneration both in vitro and in vivo. This study broadens the biomedical potential of electrical stimulation therapy and provides a comprehensive and clinically feasible strategy for the overall treatment and tissue regeneration in osteosarcoma.


Assuntos
Osteogênese , Osteossarcoma , Humanos , Osso e Ossos , Próteses e Implantes , Diferenciação Celular , Osteossarcoma/terapia , Estimulação Elétrica , Titânio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA