Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proteins ; 91(9): 1351-1360, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37163477

RESUMO

Protein glycation can result in the formation of advanced glycation end products (AGEs), which pose a potential health risk due to their association with diabetic complications. Natural products are a source of drugs discovery and the search for potential natural inhibitors of AGEs is of great significance. Glucosinolates (GSLs) mainly from cruciferous plants have potential antioxidant, anti-inflammatory, and anti-glycation activities. In this study, the inhibitory activity of GSLs on bovine serum albumin (BSA) along with its mechanism was investigated by virtual screening and various computational simulation techniques. Virtual screening revealed that 174 GSLs were screened using Maestro based on the glide score and 89% of the compounds were found to have potential anti-glycation ability with the docking scores less than -5 kcal/mol. Molecular docking showed that the top 10 GSLs were bound to the IIA structural domain of BSA. Among them, glucohesperin (1) and 2-hydroxyethyl glucosinolate (2) had the lowest docking scores of -9.428 and -9.333 kcal/mol, respectively, reflecting their good binding affinity. Molecular dynamics simulations of 1 (ΔG = -43.46 kcal/mol) and 2 (ΔG = -43.71 kcal/mol) revealed that the complexes of these two compounds with proteins had good stability. Further binding site analysis suggested that the mechanism of inhibition of protein glycation by these two active ingredients might be through competitive hydrogen bonding to maintain the structural integrity of the protein, thus inhibiting glycation reaction. Moreover, the ADMET values and CYP450 metabolism prediction data were within the recommended values. Therefore, it can be concluded that 1 and 2 may act as potential anti-glycation agents.


Assuntos
Glucosinolatos , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular , Agentes Antiglicação , Produtos Finais de Glicação Avançada
2.
Int J Biol Macromol ; 270(Pt 1): 132237, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38734351

RESUMO

As the rapid and accurate screening of infectious diseases can provide meaningful information for outbreak prevention and control, as well as owing to the existing limitations of the polymerase chain reaction (PCR), it is imperative to have new and validated detection techniques for SARS-CoV-2. Therefore, the rationale for outlining the techniques used to detect SARS-CoV-2 proteins and performing a comprehensive comparison to serve as a practical benchmark for future identification of similar viral proteins is clear. This review highlights the urgent need to strengthen pandemic preparedness by emphasizing the importance of integrated measures. These include improved tools for pathogen characterization, optimized societal precautions, the establishment of early warning systems, and the deployment of highly sensitive diagnostics for effective surveillance, triage, and resource management. Additionally, with an improved understanding of the virus' protein structure, considerable advances in targeted detection, treatment, and prevention strategies are expected to greatly improve our ability to respond to future outbreaks.


Assuntos
COVID-19 , SARS-CoV-2 , SARS-CoV-2/isolamento & purificação , Humanos , COVID-19/diagnóstico , COVID-19/virologia , COVID-19/epidemiologia , Proteínas Virais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA