Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Appl Physiol (1985) ; 97(6): 2029-34, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15531570

RESUMO

The observation that the length-force relationship in airway smooth muscle can be shifted along the length axis by accommodating the muscle at different lengths has stimulated great interest. In light of the recent understanding of the dynamic nature of length-force relationship, many of our concepts regarding smooth muscle mechanical properties, including the notion that the muscle possesses a unique optimal length that correlates to maximal force generation, are likely to be incorrect. To facilitate accurate and efficient communication among scientists interested in the function of airway smooth muscle, a revised and collectively accepted nomenclature describing the adaptive and dynamic nature of the length-force relationship will be invaluable. Setting aside the issue of underlying mechanism, the purpose of this article is to define terminology that will aid investigators in describing observed phenomena. In particular, we recommend that the term "optimal length" (or any other term implying a unique length that correlates with maximal force generation) for airway smooth muscle be avoided. Instead, the in situ length or an arbitrary but clearly defined reference length should be used. We propose the usage of "length adaptation" to describe the phenomenon whereby the length-force curve of a muscle shifts along the length axis due to accommodation of the muscle at different lengths. We also discuss frequently used terms that do not have commonly accepted definitions that should be used cautiously.


Assuntos
Contração Muscular/fisiologia , Músculo Liso/fisiologia , Terminologia como Assunto , Traqueia/fisiologia , Animais , Humanos
2.
Asian Pac J Cancer Prev ; 15(11): 4377-84, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24969857

RESUMO

According to the World Health Organization (WHO), 1.37 million people died of lung cancer all around the world in 2008, occupying the first place in all cancer-related deaths. However, this number might be decreased if patients were detected earlier and treated appropriately. Unfortunately, traditional imaging techniques are not sufficiently satisfactory for early detection of lung cancer because of limitations. As one alternative, breath volatile organic compounds (VOCs) may reflect the biochemical status of the body and provide clues to some diseases including lung cancer at early stage. Early detection of lung cancer based on breath analysis is becoming more and more valued because it is non-invasive, sensitive, inexpensive and simple. In this review article, we analyze the limitations of traditional imaging techniques in the early detection of lung cancer, illustrate possible mechanisms of the production of VOCs in cancerous cells, present evidence that supports the detection of such disease using breath analysis, and summarize the advances in the study of E-noses based on gas sensitive sensors. In conclusion, the analysis of breath VOCs is a better choice for the early detection of lung cancer compared to imaging techniques. We recommend a more comprehensive technique that integrates the analysis of VOCs and non-VOCs in breath. In addition, VOCs in urine may also be a trend in research on the early detection of lung cancer.


Assuntos
Detecção Precoce de Câncer/métodos , Neoplasias Pulmonares/diagnóstico , Compostos Orgânicos Voláteis , Técnicas Biossensoriais/métodos , Testes Respiratórios/métodos , Diagnóstico por Imagem/métodos , Nariz Eletrônico , Humanos , Neoplasias Pulmonares/urina , Compostos Orgânicos Voláteis/urina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA