Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 208
Filtrar
1.
Nat Rev Neurosci ; 22(5): 275-289, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33828309

RESUMO

Fragile X syndrome (FXS) is the most common inherited form of intellectual disability and the leading monogenic cause of autism. The condition stems from loss of fragile X mental retardation protein (FMRP), which regulates a wide range of ion channels via translational control, protein-protein interactions and second messenger pathways. Rapidly increasing evidence demonstrates that loss of FMRP leads to numerous ion channel dysfunctions (that is, channelopathies), which in turn contribute significantly to FXS pathophysiology. Consistent with this, pharmacological or genetic interventions that target dysregulated ion channels effectively restore neuronal excitability, synaptic function and behavioural phenotypes in FXS animal models. Recent studies further support a role for direct and rapid FMRP-channel interactions in regulating ion channel function. This Review lays out the current state of knowledge in the field regarding channelopathies and the pathogenesis of FXS, including promising therapeutic implications.


Assuntos
Canalopatias/etiologia , Canalopatias/fisiopatologia , Síndrome do Cromossomo X Frágil/complicações , Síndrome do Cromossomo X Frágil/fisiopatologia , Animais , Canalopatias/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Humanos
2.
Proc Natl Acad Sci U S A ; 119(28): e2119518119, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35867755

RESUMO

Early B cell factor 1 (EBF1) is a transcriptional factor with a variety of roles in cell differentiation and metabolism. However, the functional roles of EBF1 in tumorigenesis remain elusive. Here, we demonstrate that EBF1 is highly expressed in triple-negative breast cancer (TNBC). Furthermore, EBF1 has a pivotal role in the tumorigenicity and progression of TNBC. Moreover, we found that depletion of EBF1 induces extensive cell mitophagy and inhibits tumor growth. Genome-wide mapping of the EBF1 transcriptional regulatory network revealed that EBF1 drives TNBC tumorigenicity by assembling a transcriptional complex with HIF1α that fine-tunes the expression of HIF1α targets via suppression of p300 activity. EBF1 therefore holds HIF1α activity in check to avert extensive mitophagy-induced cell death. Our findings reveal a key function for EBF1 as a master regulator of mitochondria homeostasis in TNBC and indicate that targeting this pathway may offer alternative treatment strategies for this aggressive subtype of breast cancer.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia , Transativadores , Neoplasias de Mama Triplo Negativas , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Transdução de Sinais , Transativadores/genética , Transativadores/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
3.
J Pathol ; 259(1): 1-9, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36264226

RESUMO

Brain aging is closely related to neurodegenerative diseases. Circular RNAs (circRNAs) are a type of conserved RNAs with covalently closed continuous loops. Emerging evidence has shown that circRNAs are implicated in the biology of brain aging and the pathology of age-related neurodegenerative diseases. Here, we summarize current studies on circRNAs associated with brain aging and neurodegenerative diseases by discussing their expression features, pathophysiological roles, and mechanisms of action. We also discuss the potential challenges of circRNA-based therapy against brain aging and neurodegenerative diseases, as well as their potential as diagnostic biomarkers of neurodegenerative diseases. The review provides insights into current progress in the functions of circRNAs in the process of brain aging and neurodegenerative diseases. © 2022 The Pathological Society of Great Britain and Ireland.


Assuntos
Doenças Neurodegenerativas , RNA Circular , Humanos , RNA Circular/genética , Doenças Neurodegenerativas/genética , RNA/genética , Envelhecimento/genética , Encéfalo
4.
Zhongguo Zhong Yao Za Zhi ; 49(9): 2299-2307, 2024 May.
Artigo em Zh | MEDLINE | ID: mdl-38812130

RESUMO

In the traditional Chinese medicine(TCM) manufacturing industry, quality control determines the safety, effectiveness, and quality stability of the final product. The traditional quality control method generally carries out sampling off-line testing of drugs after the end of the batch production, which is incomprehensive, and it fails to find the problems in the production process in time. Process analysis technology(PAT) uses process testing, mathematical modeling, data analysis, and other technologies to collect, analyze, feedback, control, and continuously improve the critical quality attributes(CQA) in all aspects of the production of TCM preparations in real time. The application of PAT in the TCM manufacturing industry is one of the research hotspots in recent years, which has the advantages of real-time, systematic, non-destructive, green, and rapid detection for the production quality control of TCM preparations. It can effectively ensure the stability of the quality of TCM preparations, improve production efficiency, and play a key role in the study of the quantity and quality transfer law of TCM. Commonly used PAT includes near-infrared spectroscopy, Raman spectroscopy, online microwave, etc. In addition, the establishment of an online detection model by PAT is the key basic work to realize intelligent manufacturing in TCM production. Obtaining real-time online detection data through PAT and establishing a closed-loop control model on this basis are a key common technical difficulty in the industry. This paper adopted systematic literature analysis to summarize the relevant Chinese and foreign literature, policies and regulations, and production applications, and it introduced the development trend and practical application of PAT, so as to provide references for accelerating the application of PAT in the TCM manufacturing industry, the intelligent transformation and upgrading, and high-quality development of the TCM industry.


Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Controle de Qualidade , Medicina Tradicional Chinesa/normas , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/normas , Medicamentos de Ervas Chinesas/análise , Tecnologia Farmacêutica/métodos , Tecnologia Farmacêutica/normas , Indústria Farmacêutica/normas
5.
Crit Rev Food Sci Nutr ; 63(32): 11327-11350, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35796699

RESUMO

Androgen is a kind of steroid hormone that plays a vital role in reproductive system and homeostasis of the body. Disrupted androgen balance serves as the causal contributor to a series of physiological disorders and even diseases. Flavonoids, as an extremely frequent family of natural polyphenols, exist widely in plants and foods and have received great attention when considering their inevitable consumption and estrogen-like effects. Mounting evidence illustrates that flavonoids have a propensity to interfere with androgen synthesis and metabolism, and also have a designated improvement effect on androgen disorders. Therefore, flavonoids were divided into six subclasses based on the structural feature in this paper, and the literature about their effects on androgens published in the past ten years was summarized. It could be concluded that flavonoids have the potential to regulate androgen levels and biological effects, mainly by interfering with the hypothalamic-pituitary-gonadal axis, androgen synthesis and metabolism, androgen binding with its receptors and membrane receptors, and antioxidant effects. The faced challenges about androgen regulation by flavonoids masterly include target mechanism exploration, individual heterogeneity, food matrixes interaction, and lack of clinical study. This review also provides a scientific basis for nutritional intervention using flavonoids to improve androgen disorder symptoms.


Assuntos
Androgênios , Estrogênios , Androgênios/fisiologia , Polifenóis , Flavonoides
6.
Mol Cell ; 58(1): 123-33, 2015 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-25773600

RESUMO

Mitochondrial diseases and aging are associated with defects in the oxidative phosphorylation machinery (OXPHOS), which are the only complexes composed of proteins encoded by separate genomes. To better understand genome coordination and OXPHOS recovery during mitochondrial dysfunction, we examined ATFS-1, a transcription factor that regulates mitochondria-to-nuclear communication during the mitochondrial UPR, via ChIP-sequencing. Surprisingly, in addition to regulating mitochondrial chaperone, OXPHOS complex assembly factor, and glycolysis genes, ATFS-1 bound directly to OXPHOS gene promoters in both the nuclear and mitochondrial genomes. Interestingly, atfs-1 was required to limit the accumulation of OXPHOS transcripts during mitochondrial stress, which required accumulation of ATFS-1 in the nucleus and mitochondria. Because balanced ATFS-1 accumulation promoted OXPHOS complex assembly and function, our data suggest that ATFS-1 stimulates respiratory recovery by fine-tuning OXPHOS expression to match the capacity of the suboptimal protein-folding environment in stressed mitochondria, while simultaneously increasing proteostasis capacity.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Núcleo Celular/metabolismo , DNA Mitocondrial/metabolismo , Genoma Mitocondrial , Mitocôndrias/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Núcleo Celular/genética , Ciclo do Ácido Cítrico/genética , DNA Mitocondrial/genética , Genoma Helmíntico , Mitocôndrias/genética , Dados de Sequência Molecular , Fosforilação Oxidativa , Dobramento de Proteína , Estabilidade Proteica , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Transcrição Gênica , Resposta a Proteínas não Dobradas
7.
J Sep Sci ; 46(1): e2200656, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36285382

RESUMO

This paper reports a method for determining the carbonate content in barite ore using headspace gas chromatography. Based on the acidification reaction, the carbonate in the barite ore was converted to CO2 in a closed headspace vial. When the carbonate content was significant, the pressure caused changes in the CO2 and O2 signals and affected the measurement accuracy. It was found that carbonate content is proportional to the intensity ratio of the CO2 to O2 signals. Thus, the carbonate content in barite ore can be measured indirectly using a theoretical model. The results showed that the carbonate in 3 g of barite ore sample with a particle size of 74 µm could react completely with a hydrochloric acid solution (2 mol/L) at 65°C for 5 min. The method described herein had good precision (relative standard deviation < 4.14%) and accuracy (relative differences < 6.12%). Further, the limit of quantification was 0.07 mol/L. Owing to its simplicity and speed, this method can be used for the batch determination of carbonate content in barite ore.


Assuntos
Sulfato de Bário , Dióxido de Carbono , Carbonatos , Ácidos , Cromatografia Gasosa/métodos
8.
Proc Natl Acad Sci U S A ; 116(13): 6146-6151, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30850535

RESUMO

Mitochondria generate most cellular energy and are targeted by multiple pathogens during infection. In turn, metazoans employ surveillance mechanisms such as the mitochondrial unfolded protein response (UPRmt) to detect and respond to mitochondrial dysfunction as an indicator of infection. The UPRmt is an adaptive transcriptional program regulated by the transcription factor ATFS-1, which induces genes that promote mitochondrial recovery and innate immunity. The bacterial pathogen Pseudomonas aeruginosa produces toxins that disrupt oxidative phosphorylation (OXPHOS), resulting in UPRmt activation. Here, we demonstrate that Pseudomonas aeruginosa exploits an intrinsic negative regulatory mechanism mediated by the Caenorhabditis elegans bZIP protein ZIP-3 to repress UPRmt activation. Strikingly, worms lacking zip-3 were impervious to Pseudomonas aeruginosa-mediated UPRmt repression and resistant to infection. Pathogen-secreted phenazines perturbed mitochondrial function and were the primary cause of UPRmt activation, consistent with these molecules being electron shuttles and virulence determinants. Surprisingly, Pseudomonas aeruginosa unable to produce phenazines and thus elicit UPRmt activation were hypertoxic in zip-3-deletion worms. These data emphasize the significance of virulence-mediated UPRmt repression and the potency of the UPRmt as an antibacterial response.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/microbiologia , Mitocôndrias/metabolismo , Infecções por Pseudomonas/metabolismo , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas , Animais , Caenorhabditis elegans/metabolismo , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa , Ubiquitina-Proteína Ligases/metabolismo
9.
BMC Musculoskelet Disord ; 23(1): 722, 2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35902852

RESUMO

PURPOSES: The purpose of this study was to investigate the predictive effect exerted by composite indices of femoral neck strength (compressive strength index (CSI), bending strength index (BSI) and impact strength index (ISI) on the femoral head collapse in steroid-associated ONFH patients. METHODS: Nonoperative steroid-associated osteonecrosis of the femoral head (ONFH) patients from 2017 to 2019 were selected. The patients fell into the collapsed group and the non-collapsed group according to whether the femoral head collapsed. CSI, BSI and ISI were calculated. Moreover, bone turnover markers were measured. The statistical analysis was conducted on the predictive effects of composite indices of femoral neck strength and bone turnover index on ONFH collapse. RESULTS: A total of 62 patients were included. The mean CSI, BSI and ISI were significantly lower in the collapsed group than those in the non-collapsed group (P < 0.05). CSI, ISI,t-P1NP and ß-CTx were suggested as the protective risk factors for the femoral head collapse in ONFH patients. The ISI area under the curve values was 0. 878.The mean survival time of the hips of patients with ISI greater than 0.435 was greater (P < 0.05) than that of patients with ISI less than 0.435. CONCLUSION: The composite indices of femoral neck strength can predict steroid-associated ONFH femoral head collapse more effectively than the bone turnover markers. The ISI value of 0.435 is a potential cut-off value, lower than this value can predict the early collapse of steroid-associated ONFH.


Assuntos
Necrose da Cabeça do Fêmur , Cabeça do Fêmur , Necrose da Cabeça do Fêmur/cirurgia , Colo do Fêmur/diagnóstico por imagem , Humanos , Estudos Retrospectivos , Esteroides
10.
Int J Mol Sci ; 23(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36555119

RESUMO

Oligonucleotides (OGNs) are relatively new modalities that offer unique opportunities to expand the therapeutic targets. Reliable and high-throughput bioanalytical methods are pivotal for preclinical and clinical investigations of therapeutic OGNs. Liquid chromatography-mass spectrometry (LC-MS) is now evolving into being the method of choice for the bioanalysis of OGNs. Ion paring reversed-phase liquid chromatography (IP-RPLC) has been widely used in sample preparation and LC-MS analysis of OGNs; however, there are technical issues associated with these methods. IP-free methods, such as hydrophilic interaction liquid chromatography (HILIC) and anion-exchange techniques, have emerged as promising approaches for the bioanalysis of OGNs. In this review, the state-of-the-art IP-RPLC-MS bioanalytical methods of OGNs and their metabolites published in the past 10 years (2012-2022) are critically reviewed. Recent advances in IP-reagent-free LC-MS bioanalysis methods are discussed. Finally, we describe future opportunities for developing new methods that can be used for the comprehensive bioanalysis of OGNs.


Assuntos
Oligonucleotídeos , Espectrometria de Massas em Tandem , Cromatografia Líquida/métodos , Oligonucleotídeos/química , Cromatografia de Fase Reversa , Íons
11.
J Proteome Res ; 20(5): 2904-2913, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33830777

RESUMO

The gut microbiome generates numerous metabolites that exert local effects and enter the circulation to affect the functions of many organs. Despite extensive sequencing-based characterization of the gut microbiome, there remains a lack of understanding of microbial metabolism. Here, we developed an untargeted stable isotope-resolved metabolomics (SIRM) approach for the holistic study of gut microbial metabolites. Viable microbial cells were extracted from fresh mice feces and incubated anaerobically with 13C-labeled dietary fibers including inulin or cellulose. High-resolution mass spectrometry was used to monitor 13C enrichment in metabolites associated with glycolysis, the Krebs cycle, the pentose phosphate pathway, nucleotide synthesis, and pyruvate catabolism in both microbial cells and the culture medium. We observed the differential use of inulin and cellulose as substrates for biosynthesis of essential and non-essential amino acids, neurotransmitters, vitamin B5, and other coenzymes. Specifically, the use of inulin for these biosynthetic pathways was markedly more efficient than the use of cellulose, reflecting distinct metabolic pathways of dietary fibers in the gut microbiome, which could be related with host effects. This technology facilitates deeper and holistic insights into the metabolic function of the gut microbiome (Metabolomic Workbench Study ID: ST001651).


Assuntos
Microbioma Gastrointestinal , Metaboloma , Animais , Fibras na Dieta , Fezes , Isótopos , Metabolômica , Camundongos
12.
Nat Chem Biol ; 15(5): 463-471, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30936502

RESUMO

Cell wall glycopolymers on the surface of Gram-positive bacteria are fundamental to bacterial physiology and infection biology. Here we identify gacH, a gene in the Streptococcus pyogenes group A carbohydrate (GAC) biosynthetic cluster, in two independent transposon library screens for its ability to confer resistance to zinc and susceptibility to the bactericidal enzyme human group IIA-secreted phospholipase A2. Subsequent structural and phylogenetic analysis of the GacH extracellular domain revealed that GacH represents an alternative class of glycerol phosphate transferase. We detected the presence of glycerol phosphate in the GAC, as well as the serotype c carbohydrate from Streptococcus mutans, which depended on the presence of the respective gacH homologs. Finally, nuclear magnetic resonance analysis of GAC confirmed that glycerol phosphate is attached to approximately 25% of the GAC N-acetylglucosamine side-chains at the C6 hydroxyl group. This previously unrecognized structural modification impacts host-pathogen interaction and has implications for vaccine design.


Assuntos
Glicerol/metabolismo , Fosfatos/metabolismo , Polissacarídeos Bacterianos/metabolismo , Streptococcus/metabolismo , Glicerol/química , Fosfatos/química , Polissacarídeos Bacterianos/química , Streptococcus/química
13.
Phys Chem Chem Phys ; 23(37): 21218-21226, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34542142

RESUMO

The adsorption and dissociation of phosgene (COCl2) molecules on three kinds of rutile TiO2(110) surfaces (stoichiometric: TiO2-Sto; oxygen defective: TiO2-Ov; and substoichiometric: TiO1.875) were investigated based on density functional theory calculations. The nature of interactions between the COCl2 molecule and rutile TiO2(110) surfaces with different degrees of reduction was researched by the analysis of geometries, electron density difference, adsorption energies and density of states (DOS). Computational results show that COCl2 indicates instability and will dissociate directly without the presence of transition states on a substoichiometric TiO1.875(110) surface. The adsorption and dissociation behavior of COCl2 on the rutile surface is not only helpful in providing theoretical support for the clean and efficient degradation of COCl2, but also helpful in elucidating the role of COCl2 as an intermediate product in the carbochlorination of titanium ore.

14.
J Neurosci ; 39(1): 28-43, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30389838

RESUMO

Neuronal hyperexcitability is one of the major characteristics of fragile X syndrome (FXS), yet the molecular mechanisms of this critical dysfunction remain poorly understood. Here we report a major role of voltage-independent potassium (K+)-channel dysfunction in hyperexcitability of CA3 pyramidal neurons in Fmr1 knock-out (KO) mice. We observed a reduction of voltage-independent small conductance calcium (Ca2+)-activated K+ (SK) currents in both male and female mice, leading to decreased action potential (AP) threshold and reduced medium afterhyperpolarization. These SK-channel-dependent deficits led to markedly increased AP firing and abnormal input-output signal transmission of CA3 pyramidal neurons. The SK-current defect was mediated, at least in part, by loss of FMRP interaction with the SK channels (specifically the SK2 isoform), without changes in channel expression. Intracellular application of selective SK-channel openers or a genetic reintroduction of an N-terminal FMRP fragment lacking the ability to associate with polyribosomes normalized all observed excitability defects in CA3 pyramidal neurons of Fmr1 KO mice. These results suggest that dysfunction of voltage-independent SK channels is the primary cause of CA3 neuronal hyperexcitability in Fmr1 KO mice and support the critical translation-independent role for the fragile X mental retardation protein as a regulator of neural excitability. Our findings may thus provide a new avenue to ameliorate hippocampal excitability defects in FXS.SIGNIFICANCE STATEMENT Despite two decades of research, no effective treatment is currently available for fragile X syndrome (FXS). Neuronal hyperexcitability is widely considered one of the hallmarks of FXS. Excitability research in the FXS field has thus far focused primarily on voltage-gated ion channels, while contributions from voltage-independent channels have been largely overlooked. Here we report that voltage-independent small conductance calcium-activated potassium (SK)-channel dysfunction causes hippocampal neuron hyperexcitability in the FXS mouse model. Our results support the idea that translation-independent function of fragile X mental retardation protein has a major role in regulating ion-channel activity, specifically the SK channels, in hyperexcitability defects in FXS. Our findings may thus open a new direction to ameliorate hippocampal excitability defects in FXS.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/fisiologia , Hipocampo/fisiologia , Neurônios/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Potenciais de Ação/fisiologia , Animais , Região CA3 Hipocampal/citologia , Região CA3 Hipocampal/fisiologia , Feminino , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fibras Musgosas Hipocampais/fisiologia , Células Piramidais/fisiologia , Receptores de Ácido Caínico/genética , Receptores de Ácido Caínico/fisiologia , Canais de Potássio Ativados por Cálcio de Condutância Baixa/agonistas , Transmissão Sináptica/fisiologia
15.
J Lipid Res ; 61(1): 45-53, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31604806

RESUMO

Elevated circulating levels of ceramides (Cers) are associated with increased risk of cardiometabolic diseases, and Cers may play a causative role in metabolic dysfunction that precedes cardiac events, such as mortality as a result of coronary artery disease. Although the mechanisms involved are likely complex, these associations suggest that lowering circulating Cer levels could be protective against cardiovascular diseases. Conversely, dietary fibers, such as inulin, have been reported to promote cardiovascular and metabolic health. However, the mechanisms involved in these protective processes also are not well understood. We studied the effects of inulin on lipid metabolism with a model of atherosclerosis in LDL receptor-deficient mice using lipidomics and transcriptomics. Plasma and tissues were collected at 10 days and/or 12 weeks after feeding mice an atherogenic diet supplemented with inulin or cellulose (control). Compared with controls, inulin-fed mice displayed a decreased C16:0/C24:0 plasma Cer ratio and lower levels of circulating Cers associated with VLDL and LDL. Liver transcriptomic analysis revealed that Smpd3, a gene that encodes neutral SMase (NSMase), was downregulated by 2-fold in inulin-fed mice. Hepatic NSMase activity was 3-fold lower in inulin-fed mice than in controls. Furthermore, liver redox status and compositions of phosphatidylserine and FFA species, the major factors that determine NSMase activity, were also modified by inulin. Taken together, these results showed that, in mice, inulin can decrease plasma Cer levels through reductions in NSMase expression and activity, suggesting a mechanism by which fiber could reduce cardiometabolic disease risk.


Assuntos
Ceramidas/antagonistas & inibidores , Inulina/farmacologia , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Animais , Ceramidas/sangue , Biologia Computacional , Suplementos Nutricionais , Regulação para Baixo/efeitos dos fármacos , Inulina/administração & dosagem , Lipidômica , Masculino , Camundongos , Camundongos Knockout , Receptores de LDL/deficiência , Receptores de LDL/metabolismo , Esfingomielina Fosfodiesterase/genética , Esfingomielina Fosfodiesterase/metabolismo
16.
J Biol Chem ; 294(36): 13464-13477, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31337706

RESUMO

Nucleotide synthesis is essential to proliferating cells, but the preferred precursors for de novo biosynthesis are not defined in human cancer tissues. We have employed multiplexed stable isotope-resolved metabolomics to track the metabolism of [13C6]glucose, D2-glycine, [13C2]glycine, and D3-serine into purine nucleotides in freshly resected cancerous and matched noncancerous lung tissues from nonsmall cell lung cancer (NSCLC) patients, and we compared the metabolism with established NSCLC PC9 and A549 cell lines in vitro Surprisingly, [13C6]glucose was the best carbon source for purine synthesis in human NSCLC tissues, in contrast to the noncancerous lung tissues from the same patient, which showed lower mitotic indices and MYC expression. We also observed that D3-Ser was preferentially incorporated into purine rings over D2-glycine in both tissues and cell lines. MYC suppression attenuated [13C6]glucose, D3-serine, and [13C2]glycine incorporation into purines and reduced proliferation in PC9 but not in A549 cells. Using detailed kinetic modeling, we showed that the preferred use of glucose as a carbon source for purine ring synthesis in NSCLC tissues involves cytoplasmic activation/compartmentation of the glucose-to-serine pathway and enhanced reversed one-carbon fluxes that attenuate exogenous serine incorporation into purines. Our findings also indicate that the substrate for de novo nucleotide synthesis differs profoundly between cancer cell lines and fresh human lung cancer tissues; the latter preferred glucose to exogenous serine or glycine but not the former. This distinction in substrate utilization in purine synthesis in human cancer tissues should be considered when targeting one-carbon metabolism for cancer therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Glicina/biossíntese , Neoplasias Pulmonares/metabolismo , Nucleotídeos de Purina/biossíntese , Serina/biossíntese , Células A549 , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Neoplasias Pulmonares/patologia , Metabolômica
17.
Toxicol Appl Pharmacol ; 409: 115301, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33096110

RESUMO

Polychlorinated biphenyl (PCB)126 and perfluorooctane sulfonic acid (PFOS) are halogenated organic pollutants of high concern. Exposure to these chemicals is ubiquitous, and can lead to potential synergistic adverse effects in individuals exposed to both classes of chemicals. The present study was designed to identify interactions between PCB126 and PFOS that might promote acute changes in inflammatory pathways associated with cardiovascular disease and liver injury. Male C57BL/6 mice were exposed to vehicle, PCB126, PFOS, or a mixture of both pollutants. Plasma and liver samples were collected at 48 h after exposure. Changes in the expression of hepatic genes involved in oxidative stress, inflammation, and atherosclerosis were investigated. Plasma and liver samples was analyzed using untargeted lipidomic method. Hepatic mRNA levels for Nqo1, Icam1, and PAI1 were significantly increased in the mixture-exposed mice. Plasma levels of PAI1, a marker of fibrosis and thrombosis, were also significantly elevated in the mixture-exposed group. Liver injury was observed only in the mixture-exposed mice. Lipidomic analysis revealed that co-exposure to the mixture enhanced hepatic lipid accumulation and elevated oxidized phospholipids levels. In summary, this study shows that acute co-exposure to PCB126 and PFOS in mice results in liver injury and increased cardiovascular disease risk.


Assuntos
Ácidos Alcanossulfônicos/efeitos adversos , Biomarcadores/metabolismo , Doenças Cardiovasculares/induzido quimicamente , Doenças Cardiovasculares/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Fluorocarbonos/efeitos adversos , Bifenilos Policlorados/efeitos adversos , Animais , Poluentes Ambientais/efeitos adversos , Fibrose/induzido quimicamente , Fibrose/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Risco , Trombose/induzido quimicamente , Trombose/metabolismo
18.
Chin Med Sci J ; 35(4): 330-341, 2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33413749

RESUMO

Objective Alzheimer's disease (AD) is the most common cause of dementia. The pathophysiology of the disease mostly remains unearthed, thereby challenging drug development for AD. This study aims to screen high throughput gene expression data using weighted co-expression network analysis (WGCNA) to explore the potential therapeutic targets.Methods The dataset of GSE36980 was obtained from the Gene Expression Omnibus (GEO) database. Normalization, quality control, filtration, and soft-threshold calculation were carried out before clustering the co-expressed genes into different modules. Furthermore, the correlation coefficients between the modules and clinical traits were computed to identify the key modules. Gene ontology and pathway enrichment analyses were performed on the key module genes. The STRING database was used to construct the protein-protein interaction (PPI) networks, which were further analyzed by Cytoscape app (MCODE). Finally, validation of hub genes was conducted by external GEO datasets of GSE 1297 and GSE 28146.Results Co-expressed genes were clustered into 27 modules, among which 6 modules were identified as the key module relating to AD occurrence. These key modules are primarily involved in chemical synaptic transmission (GO:0007268), the tricarboxylic acid (TCA) cycle and respiratory electron transport (R-HSA-1428517). WDR47, OXCT1, C3orf14, ATP6V1A, SLC25A14, NAPB were found as the hub genes and their expression were validated by external datasets.Conclusions Through modules co-expression network analyses and PPI network analyses, we identified the hub genes of AD, including WDR47, OXCT1, C3orf14, ATP6V1A, SLC25A14 and NAPB. Among them, three hub genes (ATP6V1A, SLC25A14, OXCT1) might contribute to AD pathogenesis through pathway of TCA cycle.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Bases de Dados Genéticas , Ontologia Genética , Humanos , Mapas de Interação de Proteínas , Característica Quantitativa Herdável , Reprodutibilidade dos Testes
19.
J Foot Ankle Surg ; 59(2): 280-285, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32130991

RESUMO

In this randomized retrospective study, 2 different endoscopic approaches were used to treat intractable plantar fasciitis with the aim to reduce complications and improve therapeutic effects. The lateral double incisions group included 23 feet in 22 patients, and the medial and lateral incisions group included 21 feet in 19 patients. Both groups were treated with endoscopy through the suprafascial approach. Patients were evaluated using the American Orthopaedic Foot and Ankle Society ankle-hindfoot scale (AOFAS-AHS) and visual analog scale (VAS) preoperatively and 3, 6, 12, and 24 months postoperatively. At the final follow-up, the Roles-Maudsley (R-M) score was used to determine patient satisfaction. The AOFAS-AHS scores of the lateral double incisions group were 54.54 ± 7.02 preoperatively and 97.71 ± 3.67 postoperatively. Similarly, AOFAS-AHS scores in the medial and lateral incisions group were 55.52 ± 6.41 preoperatively and 96.64 ± 3.18 postoperatively. There was no significant difference in AOFAS-AHS scores between groups before and after surgery. The time to full weightbearing after surgery and the time to return to full athletic activities in the 2 groups showed no significant difference. The postoperative VAS scores were significantly lower than the preoperative values for both groups. However, no differences were noted in VAS scores or R-M scores postoperatively between the 2 groups. In the medial and lateral incisions group, 3 cases of injury of the first branch of the lateral plantar nerve occurred postoperatively. In conclusion, both endoscopic approaches are effective in the treatment of intractable plantar fasciitis. The lateral double incisions approach showed a lower incidence of nerve injury.


Assuntos
Endoscopia/métodos , Fasciíte Plantar/cirurgia , Fasciotomia/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Resultado do Tratamento
20.
Drug Metab Dispos ; 47(3): 238-248, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30530814

RESUMO

Nitrile group biotransformation is an unusual or minor metabolic pathway for most nitrile-containing drugs. However, for some cyanopyrrolidine dipeptidyl peptidase 4 (DPP-4) inhibitors (vildagliptin, anagliptin, and besigliptin, but not saxagliptin), the conversion of nitrile group into carboxylic acid is their major metabolic pathway in vivo. DPP-4 was reported to be partly involved in the metabolism. In our pilot study, it was also observed that saxagliptin, a DPP-4 specific inhibitor, decreased the plasma exposures of besigliptin carboxylic acid in rats by only 20%. Therefore, it is speculated that some other enzymes may participate in nitrile group hydrolysis. After incubating gliptins with the cytosol, microsomes, and mitochondria of liver and kidney, carboxylic acid metabolites could all be formed. In recombinant DPP family such as DPP-4, DPP-2, DPP-8, DPP-9, and fibroblast activation protein-α, more hydrolytic metabolites were found. Among them, DPP-2 had the highest hydrolytic capacity besides DPP-4, and the DPP-4 inhibitor saxagliptin and DPP-2 inhibitor AX8819 can both inhibit the hydrolysis of gliptins. Western blot results showed that DPP-2 and DPP-4 existed in the aforementioned subcellular organelles at varying amounts. In rats, AX8819 decreased the plasma exposures of besigliptin carboxylic acid by 40%. The amide intermediates of gliptins were detected in vivo and in vitro. When the amide derivatives of gliptins were incubated with DPP-4, they were completely hydrolyzed at a rate far more than that from the parent drug, including saxagliptin-amide. Therefore, it was proposed that gliptins, except saxagliptin, were initially hydrolyzed to their amides by DPPs, which was the rate-limiting step in generating the carboxylic end product.


Assuntos
Inibidores da Dipeptidil Peptidase IV/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Pirrolidinas/metabolismo , Administração Oral , Animais , Inibidores da Dipeptidil Peptidase IV/administração & dosagem , Inibidores da Dipeptidil Peptidase IV/química , Dipeptidil Peptidases e Tripeptidil Peptidases/antagonistas & inibidores , Humanos , Hidrólise , Masculino , Microssomos Hepáticos , Nitrilas/metabolismo , Projetos Piloto , Pirrolidinas/administração & dosagem , Pirrolidinas/química , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA